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ABSTRACT
There has been much controversy in the literature on
several issues underlying the construction of parametric
software development cost models. For example, it has
been argued whether (dis)economies of scale exist in
software production, what functional form should be
assumed between effort and product size, whether
COCOMO factors were useful, and whether the COCOMO
factors are independent. Answers to such questions should
help software organizations define suitable data collection
programs and well-specified cost models. The only way to
address these issues and obtain a generalizable conclusion
is to investigate them on a large number of consistent data
sets. In this paper we use a data set collected by the
European Space Agency to perform such an investigation.
To ensure a certain degree of consistency in our data, we
focus our analysis on a set of space and military projects
that represent an important application domain and the
largest subset in the database. These projects have been
performed, however, by a variety of organizations. First,
our results indicate that two functional forms are plausible
between effort and product size: linear and log-linear. This
also means that different project subpopulations are likely
to follow different functional forms. Second, besides
product size, the strongest factor influencing cost appears
to be team size. Larger teams result in substantially lower
productivity, which is interesting considering this attribute
is rarely collected in software engineering cost data bases.
Third, although some COCOMO factors appear to be
useful and significant covariates, they play a minor role in
explaining project effort. Overall, the most plausible model
appears to be a log-linear model involving KLOC, team
size, and a principal component influenced by three
COCOMO factors: reliability requirements (RELY),
storage constraints (STOR), and execution time constraints

(TIME). High values for these factors are likely to be
associated with embedded systems, which usually share
these characteristics.

Keywords
Software Cost Estimation, Model Specification, Economies
of Scale

1 INTRODUCTION
There has been keen research interest in developing a
general theory of software development resource
expenditures. Such a theory would take the form of the
relationship(s) between product size, development effort,
and productivity factors.  This is evidenced by the recent
large scale effort to develop the COCOMO II model [6], as
well as the large number of earlier studies
[3][4][5][12][13][16][17][19]. It is believed that such a
theory would alleviate the current software production
inefficiencies and cost overruns through a better
understanding of factors affecting cost, of how to manage
projects to maximize productivity, and by providing
improved cost estimation capabilities.

Important ingredients of such a theory are (1) an
elaboration of whether economies or diseconomies of scale
exist in software production, and (2) the exact nature of the
functional form of the effort/size relationship (e.g., linear,
quadratic, exponential, log-linear, or translog).

There have been a series of studies that investigate whether
(dis)economies of scale exist in software production
[1][2][17], and the functional form of the relationship
between effort and size [12]. However, taken as a whole,
these studies provide an inconsistent picture, due in part to
the use of different data sets from different application
domains, but also to different analysis techniques.  This
makes it difficult to make general statements on whether
there indeed are any (dis)economies of scale, and what the
functional form of the effort-size relationship should be.

In this paper we investigate the existence of (dis)economies
of scale, and the functional form of the effort-size
relationship.  We do so within a single application domain
(space and military projects) with a large multi-
organizational database, using the same analysis techniques
as previous researchers to promote comparability of results.
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The database projects come from a variety of European
countries and have been contracted by the European Space
Agency (ESA). Since this database covers a large number
of organizations and represents a significant portion of the
market in the application domains considered, we expect
that our findings are of reasonable external validity, i.e.,
can be generalized to the European space and military
application domain at large.

Briefly, our results show that the relationship between
effort and size appears to be log-linear (i.e., of the form
a×KLOCb). Furthermore, we did find economies of scale in
this data set.  It was also found that, like in other studies
[7][14][22], higher team size results in lower productivity
due in part to larger communication overhead. This is
consistent with the underlying assumptions of the
COCOMO and Putnam models. Finally, some of the
productivity factors (a subset of the COCOMO factors)
collected here appear to be significant covariates in the
effort models. However, their impact is relatively weak and
they do not substantially improve the models’ goodness of
fit. This may be explained by the fact we are working in a
well-defined application domain where such factors do not
strongly discriminate between projects.

The practical implications of these results for the European
space and military software industry are threefold. First, it
suggests that if projects are divided up into multiple
independent increments, one may assess the productivity
losses associated with such a decision and weigh it against
the gains expected from incremental development.
Secondly, the impact of team size observed on this data set
is very substantial, suggesting that such a measure should
be systematically and carefully collected in software
engineering cost databases. Finally, the weak effect of the
COCOMO factors that were considered suggests that
organizations should not directly use the generic
productivity factors, but ought to consider identifying their
own productivity factors, or at least customizing the
generic productivity factors to their local environment.

The structure of the paper is as follows. After the
Introduction, Section 2 discusses the concept of economies
of scale and different functional forms capturing the
relationship between effort and size. It is followed by a
discussion of interrelationships between COCOMO factors.
Section 3 describes the database we used for our analysis,
the measures we used to compare the different functional
forms, how we accounted for cost factors in our models,
and how we dealt with outliers in the data. Section 4
provides the analysis results in terms of univariate and
multivariate regression models, as well as their comparison.
Finally, Section 5concludes the paper and gives some
information about our future research directions.

2 BACKGROUND
Economies of Scale and Functional Form
The concept of economies of scale states that average

productivity increases as the system size increases. This has
been attributed, for example, to software development tools
whereby the initial tool institutionalization investment may
preclude their use on small projects [5]. Furthermore, there
may be fixed overhead costs, such as project management,
that do not increase directly with system size, hence
affording the larger projects economies of scale. On the
other hand, it has been noted that some overhead activities,
such as documentation, grow at a faster rate than project
size [14], contributing to diseconomies of scale.
Furthermore, within a single organization, it is plausible
that as systems grow larger, then larger teams will be
employed. Larger teams introduce inefficiencies due to an
increase in communication paths [7], the potential for
personality conflicts [5] and more complex system
interfaces [8].

The four functional forms that have been investigated in the
literature for modeling the relationship between system size
and effort are summarized in Table 1. It is clear that the
linear model does not exhibit any (dis)economies of scale.
A popular functional form for this relationship has been the
log-linear model, specified by the well-known COCOMO
model [5].

Kitchenham [17] looks at how significantly different from
1 is the exponent parameter in the log-linear model (the b
parameter in Table 1). She concludes that, over 12 datasets,
the relationship between effort and size is rather linear
since most coefficients are not significantly different from
1. Banker and Kemerer [1] use the econometric concept of
elasticity [15] in order to determine whether there is an
ideal project size (the “most productive scale size” or
MPSS) where productivity is optimal. Over 9 datasets, they
show that, although MPSS shows large variation, there was
evidence of both economies and diseconomies of scale.
They conclude that traditional models such as the log-linear
relationship are therefore too limited to take into account
the effort/size relationship. More recently, Hu [12] revisited
some of the data sets already investigated and concluded
that, over 9 data sets, the quadratic model seemed to be the
most plausible relationship between effort and size in
comparison with the other three. The comparison procedure
he used, referred to as the P-test, was designed to test the
specifications of econometric models since, he argues, non-
nested models cannot be compared by just looking at the
adjusted R2.

Hu’s [12] results are promising since they are based on an
objective and statistically valid approach for comparing the
four different functional forms. However, the conclusions
that are drawn have a number of important weaknesses.
First, no outlier analysis was performed on the data sets
that were used. It is well known that, at least for one of the
data sets coming from the work of Kemerer [13] there is
one extreme outlier that has a substantial influence on the
results of regression analysis (see [18]). Second, many of
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the data sets are quite old, some dating from the late
seventies and early eighties. It is not clear that the same
phenomena would be observed in modern software
production. Third, an analysis that was used to support the
conclusions involves the pooling of eight different data sets
together. This is highly questionable since there would be
inconsistencies in the manner in which both effort and size
(in Lines of Code) are measured across these data sets.
Finally, there are inconsistent arguments presented in
justifying the conclusions.  For instance, the results of an
analysis of the Kemerer data set is used to justify the strong
conclusion that the linear model should be rejected as a
plausible functional form. Note that the Kemerer data set
has 15 projects. However, on the same page, the results of
the analysis of the Wingfield data set that show that the
linear model is a more plausible functional from than the
quadratic model are discounted, because “being one of the
smallest data set (15 observations), the significance of these
results should be discounted”.

Clearly then, it is imperative to continue studying the
functional form of the relationship between effort and size.

Model Specification Model Name

)( SizebaEffort ×+= Linear Model

)()( 2SizecSizebaEffort ×+×+= Quadratic Model

ba SizeeEffort ×= Log-linear Model

Sizecba SizeSizeeEffort ln×××= Translog Model

Table 1: Different functional forms for modeling
the relationship between effort and size.

Interrelationships between COCOMO Factors
COCOMO-based cost estimation models assume that the
factors (cost drivers) are independent of one another.
However, several studies demonstrated that the cost factors
are often interrelated. Kitchenham [16] shows that there is a
relationship between two of the COCOMO factors based on
the COCOMO data set itself. Similarly, through principal
component analysis, Kitchenham [17] found that, out of 21
cost factors, seven principal components accounted for
75% of the effort variability in a data set of 28 projects.
This supports the results of Subramanian et. al. [23].
Through factor analysis of the COCOMO data set, they
reduced the 15 COCOMO factors to four factors,
accounting for 73% of variation in the variable space. The
identified concepts are expressed as constraints: application
constraint, virtual machine and language constraint,
completion within schedule constraint, and programming
capability constraint. Maxwell et. al. [19] analyzed the ESA
database, including projects from the space, military, and
industrial environments. They report that the seven
collected COCOMO factors could be grouped into four
factors explaining 90% of the variance in the data. The first

factor included TIME, STOR, and RELY, the second factor
was MODP and TOOL, the third factor consisted of LEXP,
and the fourth was VIRT (see Table 2 for variable
description).

The studies presented above suggest that COCOMO factors
do not capture independent concepts. In the remainder of
this paper, we will therefore perform principal components
analysis in order to identify the underlying concepts
captured by the COCOMO factors in our data set and use
its results to help interpret the results of our analysis.

3 RESEARCH METHOD
In this section, we describe the data set we have used to
perform this research. Then, the method used to compare
alternative cost models is presented.

Data Source
The database used in this study is the European Space
Agency (ESA) multi-organization software project
database. Since 1988, the ESA continuously collects
historical project data on cost and productivity from
different application domains. The data comes from
European organizations, with applications from the
aerospace, military, industrial, and business environment.
Each data supplier is contacted on a regular basis to
determine if projects are nearing completion. Once a
project questionnaire is filled out, each data supplier is
contacted to ensure the validity and comparability of the
responses. Each data supplier regularly receives data
analysis reports of the data set.

At the time of our analysis, the database consisted of 158
projects. The breakdown of projects by environment was:
36% space, 32% military, 22% business, and 10% industry
projects. The variables that are taken into account in our
analysis are listed in Table 2. These are variables that
potentially may have an impact on software project cost.

Because the database contains projects that used multiple
programming languages, we limited our analysis to the 64
projects from the space and military environment
developed with high-level languages, leaving out projects
developed (partly or fully) with Assembler, for example.
This increases our confidence that we have somewhat
comparable size measurement.

Comparison of Models
Functional Forms to be Compared
We fit our data to each of the four models in Table 1 using
linear ordinary least squares regression. The bottom two
models are appropriately converted into a linear model, in
order to allow the use of linear least-squares regression
estimates. Certain precautions were taken to address the
existence of outliers, which is a common occurrence with
cost and productivity data. These are explained below.

Comparing the Models’ Goodness of Fit
The two traditional ways of assessing and comparing the
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goodness of fit of cost models is to compute their
coefficient of determination R2 (adjusted for the number of
variables), their Pred (.25) value, and their mean magnitude
of relative error (MMRE) [8]. However, although it may be
an important selection criterion for a model, the MMRE is
sensitive to the weight that a model grants to smaller
projects. Because of the MRE’s mathematical formulation
smaller projects tend to yield the larger MRE values. For
example, the log-linear model, because of its logarithmic
transformation, grants more weight to smaller projects than
the linear model. The MRE values for the smaller projects
become lower through the logarithmic transformation and
therefore, the MMRE is usually smaller. But, it is important
to note that a smaller MMRE does not indicate in any way
that the log-linear model is a more plausible alternative.

In our study we perform two kinds of model comparisons
which should be distinguished since they require different
comparison techniques. In the simplest case, we compare
nested models: one model has a set of terms which is a
subset of the other model’s terms, e.g., linear and quadratic
models. In this case, the adjusted R2 can simply be used as
a means of comparison. A second, more complicated case,
is when the two models to be compared are not nested. As
described in [12], non-nested models cannot be compared
using the R2 since this one is affected by the use of
different variables, showing different spacing within the
data. Therefore, as suggested by Davidson and MacKinnon
[10] and used by Hu [12], a series of tests can be used to
test whether a given model is the most plausible among
several alternatives.

Identifying the Most Plausible Models
Davidson and MacKinnon [10] propose a set of  tests which
are easier to use in different circumstances. Although Hu
[12] used the P-test in his study, it is recommended to use
the J-test when testing the plausibility of linear (or

linearized) models. The J-test is easier, more intuitive, and
should yield identical results. When comparing two
models, the J-test consists of performing the following
regression:

( ) ( ) iiiii gXfy ελβλ +×+×−= )
,1 ,

( )γ))
,iii Zgg = , where γ) is the estimate of γ ,

where

( ) iiii XfyH 00 ,: εβ += ,

iy is the ith observation on the dependent variable, iX is a

vector of observations on independent variables, β  is a
vector of parameters to be estimated, and the error term is
assumed to be normally distributed.

( ) iiii ZgyH 11 ,: εγ += ,

Zi is a vector of observations on independent variables, γ
is a vector of parameters to be estimated, and the error term
is assumed to be normally distributed. Using the formula
above, assuming we wish to test that if  is the most

plausible model, then we test whether λ is equal to zero. If
this is the case, then the alternative model is not needed to
explain variations in effort. This test can be performed
using the usual two tailed t-test based on the λ estimate and
its standard error in order to determine whether the λ
estimate is significantly different from zero. To test the

plausibility of ig , the two functions just have to be

substituted in the formula above and the t-test performed
again. If the two t-tests, for the two alternative models, tell
us that λ is not significantly different from zero, then both
models are plausible. If one t-test shows an λ value

Variable Description Scale Values / Range / Unit

PROJTYPE Type of SW Project nominal Customized Application, Partly Customized Application,
Integration Project, Embedded Application, SW Product
Development, Other

KLOC New developed code ratio 1 KLOC=1000 LOC

EFFORT Effort for SW project ratio Person hours , where 144 person hours=1 person month

TEAM Maximal team size on one stage of
a project

ratio

VIRT virtual machine volatility ordinal 2-5 (low-very high)

RELY required reliability ordinal 1-5 (very low-very high)

TIME execution time constraints ordinal 3-6 (nominal-extra high)

STOR main storage constraint ordinal 3-6 (nominal-extra high)

MODP use of modern programming
practices

ordinal 1-5 (very low-very high)

TOOL use of software tools ordinal 1-5 (very low-very high)

LEXP programming language experience ordinal 1-4 (very low-high)

Table 2: Variables from the ESA Database
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significantly different from zero, whereas the t-test for the
alternative model does not, then the former model is less
plausible than the latter one.

For the quadratic and translog models, we determined
whether the regression coefficients of the quadratic terms
of the equations are statistically significant. If not, then
only the linear and log-linear models, respectively, have to
be considered for the J-test. For the log-linear model, the
exponential term coefficient is also tested in order to
determine whether it is significantly different from 1 (and
not 0, as the usual t-test procedure goes). This will confirm
whether (dis)economies of scale are plausible, based on the
data.

Accounting for COCOMO Factors
It has been shown in the literature that the COCOMO
factors are often interrelated. In order to facilitate the
interpretation of our results, we perform principal
components analysis [11] to determine the actual
underlying concepts of the COCOMO factors measured in
this data set. Then, the resulting principal components are
used instead of the COCOMO factors themselves in order
to improve the fit of the cost models. Team size is also used
independently as a covariate in the cost model equations.
Using stepwise regression, we identify the best multivariate
regression models and assess the relative impact of each
factor (KLOC, team size, COCOMO principal components)
on effort. In the log-linear (and translog) model, these
factors have implicitly a multiplicative effect on effort
whereas in the linear (and quadratic) model, they have an
additive effect. We have also considered interaction terms
in the equations in order to take into account interaction
effects between KLOC and the other factors. In the log-

linear model, significant interaction terms would mean that
the extent of the economies of scale is affected by the
factors themselves.

Outliers
Outliers (i.e., overinfluential data points in this context) can
have a substantial impact on the results of a least squares

regression analysis, e.g., R2, coefficients. For software cost
and productivity data, it is common to see many projects
with effort towards the low end of the scale and then a few
very large projects or projects with extraordinarily high
productivities. This may be due to inconsistencies in
measurement or to the fact that a few projects belong to a
different statistical population than the rest of the data set.
Outlying observations can pull the regression plane towards
them to optimize the squared error criterion, but this results
in models that are not stable. If the outlying observation is
removed then dramatically different results would emerge.
Furthermore, when assessing the goodness of fit using the
mean MRE, the MRE values tend to be inflated because
many of the small projects exhibit relatively large MRE’s.

Not dealing with outliers adequately can produce
misleading results, and has done so in the past in the cost
estimation domain (see [17]). It is therefore prudent to
consider this particular issue during our analysis. As
criteria to identify outliers, we used the widely used Cook’s
distance [9] and R2 measures. In a stepwise manner, we
removed each observation with the highest Cook’s distance
measure, until a certain stability was achieved in terms of
R2. This allows us to ensure that the results we obtained
were not due to a few observations but were representative
of the general trends in our data set.

4 RESULTS
The first subsection focuses on building effort models
capturing the relationship between effort and product size,
as well on the impact of additional factors such as team size
and several COCOMO factors. The second subsection
discusses the results in general.

Building Effort Models
Relationship between Effort and Size
The results in Table 3 summarize the four models that were
developed between effort and size utilizing the four
considered functional forms. All models have an R2 value
that is statistically significant at an alpha level of 0.05. In

Model Specification Parameter Estimates Std Error R2 / R2 adj MMRE Pred(.25) Obs

a (not sign.) 6447.69  3364.5 0.41 / 0.40 1.24 19% 64)( KLOCbaEffort ×+=
b 323.17  49.17

a 5515.07 4121.57 0.41 / 0.39 1.19 22% 64

b 371.98  132.46

)()( 2KLOCcKLOCbaEffort ×+×+=

c (not sign.) -0.22  0.56

a 7.02 0.26 0.42 / 0.41 0.69 27% 64))ln(()ln( KLOCbaEffort ×+=
b 0.73 0.082

a 7.38 0.54 0.42 / 0.41 0.67 26% 64

b (not sign.) 0.45 0.37
))(ln())ln(()ln( KLOCcKLOCbaEffort ×+×+=

c (not sign.) 0.045 0.057

Table 3: Types of models: relationship Effort vs. System size
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general, all the four models explain approximately 40% of
the variation in these projects. The quadratic model had a c
parameter that was not statistically significant. The translog
model had b and c parameters that were both not
statistically significant. This indicates that these two
functional forms do not provide adequate models
explaining effort since the parameters of their quadratic
terms are not significantly different from zero.

We are left with the linear model and the log-linear model
as plausible alternatives for modeling the relationship
between effort and size. For these two models, the relevant
parameters are statistically significant. Furthermore, the
log-linear model has a b parameter that is different from 1
beyond what would be expected by chance (at a two-tailed
alpha level of 0.05). This indicates the potential existence
of economies of scale, and also that the linear and log-
linear models capture two significantly different
relationships between effort and size.

It is interesting to compare these findings with previous
research. First, unlike the conclusions of Hu [12], we do
not find the quadratic model to provide the best
specification of the relationship between effort and size.
We found the parameters in this model to be essentially
zero. Furthermore, our results are different from those of
Kitchenham [17] in that the exponent for the log-linear
model was found to be different from one, indicating
economies of scale. However, our results so far are also
similar to Kitchenham’s in that we do find the linear model
as a plausible alternative.

There have been discussions in the literature about the
confusion caused by inconsistent results on the existence of
economies/diseconomies of scale [1]. This confusion is
because different studies conclude that there are different
laws relating size and effort. Our results show that, by
looking at only size and effort, indeed different laws are

plausible: linear and log-linear.

One approach for comparing these two different laws is the
J-test. The results from the application of the J-test are
shown in Table 4. None of the comparisons yield a
statistically significant result, confirming that the two laws
are both plausible based on our data set.

H0 H1 p-value for λ
Linear model Log-linear model 0.4034

Log-linear model Linear model 0.44

Table 4: J-test results for model 1 and model 3
from Table 3

It is important to also note that the approach proposed by
Banker and Kemerer [1] was tried in order to determine if
there were a most productive scale size (MPSS). However,
since the relationships appeared to be rather exponential or
linear, it expectedly did not yield any result. It is possible
that such a MPSS would only be visible in a data set
coming from one organization.

The question then becomes whether we can improve on
these two plausible models to find a better law and also to
explain more of the variation in effort. The latter is clearly
important because the effort and size models can explain
only 40% of the variation in effort, and also it is intuitively
obvious that size alone would not be the only factor
affecting effort. In addition, by explaining more of the
effort variation using other factors, we might be able to
better identify the most plausible relationship between size
and effort.

Modeling the Impact of Team Size
The first variable we investigate is team size, i.e., defined
here as peak staff load for the whole project. The
importance of team size was considered in previous
modeling efforts, such as the COCOMO model, Putnam’s
model [20], the Walston Felix Model [24], and Basili and
Freburger [4]. But in most cases, team size was not
identified as a significant factor on productivity assessment
(see [8]). Conte et al. [8] suggested that team size  may
have been captured indirectly by other factors correlated
with team size. Conte et al. then derived a productivity

model including team size. This model depends on an
assumed average degree of interaction among the
developers and is based on the observation that, as the team
size grows, the number of communication paths will also
tend to grow.

Simmons [22] investigated the influence of group
communication and design partition on productivity. He

Model Specification Paramater Estimates Std Error R2 / R2 adj MMRE Pred(.25) Obs

a -11480.73 3698.86 0.72 / 0.71 0.73 20% 54

b 142.21 43.77

)()( TEAMcKLOCbaEffort ×+×+=

c 3195.69 413.62

a 6.23 0.22 0.72 / 0.76 0.48 31% 54

b 0.39 0.08

))ln(())ln(()ln( TEAMcKLOCbaEffort ×+×+=

c 0.99 0.13

Table 5: Linear and log-linear model: effort vs. system size and team size
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found that both design partition and communication are
influential factors that may cause a ten-fold decrease in
productivity. An effective design partition gets more
important when staff size increases. He also reports a team
size of eight people as being optimally efficient in his
study.

In Table 5 we show the results of adding team size to our
previous two plausible models1. This dramatically increases
the R2 value to approximately 0.72 in both cases. All
parameters in both models are statistically significant.

The result for the log-linear model can be interpreted as
follows: the higher the team size, the higher the impact of
system size on effort, and vice-versa. For large systems, the
impact of larger teams increases since more communication
overhead is required. This is illustrated by Figure 1.

The results of performing the J-test are shown in Table 7.
Given that we use an alpha level of 0.05 for statistical
testing, these results indicate that including the Team Size
variable does not help us identify the most plausible model
specification. Again, both the linear and log-linear models
are plausible, although the linear model is closer to be
rejected.

                                                          
1 Note that the reduced sample size is due to missing data in
the Team Size variable.  We do not have any reason to
believe that there is a systematic bias in the provision of
Team Size data (i.e., that there is a relationship between
whether respondents provide this data and actual team
size).

Figure 1: Relationship among Effort vs. Team Size
and System Size

H0 H1 p-value for λ
Linear model Log-linear model 0.0938

Log-linear model Linear model 0.8423

Table 7: J-test results for models from Table 5

Modeling the Impact of COCOMO factors
The next set of variables that we consider are the
COCOMO factors. It has been demonstrated through a
number of previous studies that the COCOMO productivity

Model Specification Parameter
Estimates

Std Error R2 / R2 adj MMRE Pred(.25) Obs

a -5482.54 6295.33 0.77 /
0.75

0.85 30% 40

b 205.87 49.39

c 3307.72 446.91

)3()()( FactordTEAMcKLOCbaEffort ×+×+×+=

d -3786.73 1850.397

a 1.30 1.34 0.79 /
0.78

0.41 40% 40

b 0.44 0.08

c 0.74 0.14

))1ln((

))ln(())ln(()ln(

Factord

TEAMcKLOCbaEffort

×
+×+×+=

d 1.84 0.48

Table 6: Linear and Log-linear model: results from stepwise regression
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factors are not independent of each other [16][19]. In the
ESA Space and Defense database seven of the COCOMO
factors are collected. We therefore performed a principal
components analysis on these seven variables to determine
which are the underlying concepts. The results are shown in
Table 8.

These results clearly indicate three distinguishable concepts
(factors). The first factor relates to the constraints usually
imposed on embedded, real-time systems (high reliability
requirements, high storage and timing constraints). The
second concept concerns the use of modern software
engineering practices and powerful tools, which usually
come together. The third factor captures the knowledge
about the development platform (i.e., virtual machine) and
the programming language. It is expected that if the
platform is volatile, then it is unlikely that there will be
sufficient up-to-date knowledge about it and the
programming language in use on this platform, with its
programming support tools.

Each of the principal components can be utilized as a single
variable that is entered into the regression models that we
are building. Each of them can be seen as a weighted sum
of the most important variables (high factor loadings) to
produce a composite variable. In our case, for example,
Factor 1 includes variables RELY, TIME, and STOR.

Factor 1
(RTC: Real

Time
Constraints)

Factor 2
(SEP: Software

Engineering
Practices)

Factor 3
(EXP:

Experience)

VIRT 0.22 -0.3 -0.67

RELY 0.83 -0.22 0.004

TIME 0.89 0.25 0.007

STOR 0.73 0.43 -0.004

MODP -0.13 -0.68 -0.42

TOOL -0.09 -0.85 0.15

LEXP 0.17 -0.21 0.84

Table 8: Results of Principal Components
Analysis on the seven COCOMO factors (73% of
variation explained). Rotated components.

The result of constructing a log-linear model and a linear
model including the team size and the three factors
mentioned above are summarized in Table 6. Note that a
backward stepwise regression procedure was followed.
Compared to the models in Table 5, the R2 values
increased, but not dramatically.

The results in Table 6 can be interpreted as follows. For the
linear model, we see that there is a linear relationship
between experience and effort. The relationship is negative
because of the way this principal component was coded:
negative values indicate lack of experience. For the log-

linear model, the results indicate that as real-time
constraints (Factor 1) increase, there is an increase in effort.
For greater real-time constrained projects, the impact of
team increases. For large team sizes, the impact of Factor 1
increases and effort grows even faster than Factor 1
following a convex curve, as illustrated in Figure 2.

One potential explanation is that for a fixed team size, there
is a ceiling effect on the amount of effort that can be
consumed on projects. In addition, as team size increases,
more inspections and integration testing may be needed to
meet a given level of reliability and performance.

 
Figure 2: Relationship Effort vs. Factor 1 and
Team Size

The results of the J-test for comparing these two models are
shown in Table 9. These results clearly indicate the
superiority of the log-linear model to the linear model,
since H0 is rejected for the linear model. Therefore, by
adding new variables to further explain the variation in
effort, we have found that a log-linear model provides the
most plausible explanation of effort. This model explains
79% of the variation in effort. Furthermore, this model
shows economies of scale as the coefficient b in the log-
linear model is lower than 1 and significantly different
from 1 (Table 6).

By adding new factors in the model, we are able to better
distinguish the most plausible functional form. Our results
might explain why it was difficult, in many studies, to
differentiate the most plausible functional form when
looking only at the size/effort relationship.

H0 H1 p-value for λ
Linear model Log-linear model 0.0002

Log-linear model Linear model 0.2086

Table 9: J-test results for models from Table 8

Since multicollinearity can have a significant impact on
multivariate coefficients, we also performed a
multicollinearity analysis. We wanted to ensure that we
could interpret the regression coefficients presented above
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(Table 6). For each model, we built regression equations
using in turn each regressor as a dependent variable and the
others as independent variables. We calculated the variance
inflation factor (VIF) for each of the regression equations,
as described in [21]. Multicollinearity is declared to exist
whithin a model, if any VIF is greater or equal to a certain
threshold, usually 10. In our case, all of the VIF’s were
very low and below 10. Thus, we can conclude that
multicollinearity is very low in our multivariate models.

Another type of model that we did test during our study
was one including interaction effects in both, the linear and
log-linear model. For the log-linear model, it consists of the
addition of a multiplicative term including two logarithms.
This kind of model is based on the hypothesis that other
variables (e.g., Team Size) have an impact on the extent of
economies of scale since they would affect the KLOC
exponent value. We did not find the interaction terms in
both models to be statistically significant, indicating that
there is no interaction effect. Therefore, with respect to the
log-linear model, we do not have evidence that the extent
of economies of scale is affected by other contextual
factors.

5 CONCLUSIONS
Our goal in this paper was to investigate a few of the
important questions regarding software cost modeling by
using a part of the European Space Agency project
database. We looked at the plausibility of various
functional forms modeling the effort/ product size
relationship, the extent of economies of scale, the impact of
factors such as team size and various COCOMO factors.

Our results provide a log-linear model that explains a large
proportion of the variation in project effort. This result is
surprising considering that we are using a multi-
organization database and would expect more inconsistency
in the data. system size and team size are the factors having
the largest impact on the goodness of fit of the model.

When trying to identify the most plausible relationship
between effort and size, two functional forms are equally
plausible: linear and log-linear. However, when integrating
team size and COCOMO factors as covariates, thus
explaining some of the effort variance not explained by
system size, the log-linear model appears to be the most
plausible one. On the other hand, no quadratic term was
found significant when added to these two models so that
the models referred to as quadratic and translog [1] are not
plausible based on this data set.

The relationship between effort and size is difficult to
identify and characterize because it may be blurred by other
factors. This may explain the inconsistency of results in the
literature regarding the nature and form of the effort / size
relationship.

Another important result was that team size has a very
substantial impact on project productivity, thereby

confirming that compressing cycle time, which results into
larger teams, comes at a substantial additional cost. Such a
result was suggested by several authors in the past [7][8]
and is confirmed here in quantitative terms, both for the
linear and log-linear models.

Our database contained data for seven of the COCOMO
factors that were deemed more important by the European
Space Agency. Similarly to other studies [16][19], we have
identified numerous interrelationships between these
factors. In fact, a principal component analysis reveals that
the seven factors capture three concepts: (1) the typical
features of embedded systems such as high real-time and
storage constraints, and high reliability requirements, (2)
the use of modern programming practices and tools, (3) the
working knowledge of the programming language and
development platform. When we tried to use this principal
components to improve the effort model equations, (1) and
(3) appeared significant in the linear and log-linear models,
respectively. One of the reasons why the two factors do not
appear in both models is that, at this point, only 40
observations remain in the sample and cannot allow much
more that 4 estimated parameters. At any rate, although
significant, the selected COCOMO principal components
do not have a substantial effect on the goodness of fit of the
models. The investigation of additional factors explaining
more  variance in the ESA data set is therefore an important
issue.

We can only confidentially claim that these results are
applicable to European space and military projects.
However, since we have a rather representative, recent, and
large database, we believe we can make a number of
practical recommendations. First, for the particular
application domains under study, a log-linear relationship
between effort and size should always be investigated. If
different model specifications between effort and system
size are tested and compared, then other covariates should
be included in the model to better differentiate the available
specification alternatives. We have seen in this study that it
can make a significant difference in the analysis output
when, for example, using the J-test. This may explain why
so many studies on this topic yield contradictory results.
Another practical recommendation is that team size should
be measured in some way and considered in the prediction
models. Many existing databases do not, however, consider
this cost driver in an explicit manner.
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