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Abstract

In order to control inspections, the number of remaining
defects in software artifacts after their inspection should be
estimated. This would allow, for example, deciding whether a
reinspection of supposedly faulty artifacts is necessary.
Several studies in software engineering have considered
capture-recapture models for performing such estimations.
These models were initially developed for estimating animal
abundance in wildlife research. In addition to these models,
researchers in software engineering have recently proposed
an alternative approach, namely the Detection Profile
Method (DPM), that makes less restrictive assumptions than
some capture-recapture models and that show promise in
terms of estimation accuracy. In this study, we investigate
how to select between these two approaches for defect content
estimation. As a result of this investigation we present a
selection procedure taking into account the strength and
weaknesses of the two methods. A weakness known for
capture-recapture models is that they tend to provide extreme
under/over estimation. The existence of such extreme outliers
can discourage their use because their consequences in terms
of wasted effort or defect slippage can be substantial, and
therefore it is not clear whether a particular estimate can be
trusted. The evaluation of our selection procedure with actual
inspection data indicates that this selection procedure
provides the same accuracy as capture-recapture models
alone and DPM alone, and most importantly does not exhibit
extreme over/under estimation. Thus, this selection procedure
can be used in practice with a high degree of confidence since
its estimates are not likely to exhibit extreme estimation error.

Keywords: capture-recapture model, defect content
estimation, software inspections.

1. Introduction

The construction of reliable software requires that the
number of defects introduced and propagated during
development is minimized. An important and widely-applied

technique for achieving this objective is software inspections.
The benefits of inspections stem from the fact that defects are
detected early after their insertion, and that rework costs are
reduced [10]. Also, inspections find defects that are less likely
to be found using other defect detection techniques [4][14].
Thus it is possible to (1) increase reliability by removing
defects and (2) reduce costs and cycle time by saving on
rework. 

Various inspection processes and reading techniques have
been proposed to increase the effectiveness of inspections.
However, regardless of the effectiveness of the reading
technique employed or other changes to the inspection
process, without any quality control on the inspection
process, the use of inspections is destined to be suboptimal.
One approach to optimize the effectiveness of inspections is
to reinspect an artifact that is presumed to still have high
defect content. The reinspection decision criterion could be
based on the number of remaining defects after an inspection,
which can be estimated with defect content models.

A promising approach for the estimation of defects in an
inspected software artifact was proposed by Eick et. al. [7].
They applied Capture-Recapture (C/R) Models, which are
used in biology to estimate animal abundance, to predict the
number of defects in a software artifact after design
inspections. Based on this idea, several researchers have
explored this approach further ([17], [8], [19], [13], [9], [6],
[1]). 

A recent, comprehensive evaluation study of C/R Models
[6] identified the type of model that seems to be the most
accurate and usable in the context of software inspections.
However, this ‘best’ model still exhibited some
characteristics that make it difficult to use in practice: in some
cases it exhibits extreme outliers in its estimates. This
behavior does not give confidence to the user that the model
is always providing reasonable estimates, and therefore could
discourage its use.

A complementary approach for estimating defect content
has been recently proposed by Wohlin and Runeson [18].
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Their approach is based on plotting defect data according to
some criterion. Based on this plot, a curve is fitted through
the data points. Using the parameter of this fitted curve the
number of defects in an artifact can be estimated.

In this paper we propose some strategies for enhancing
the most promising approach proposed by Wohlin and
Runeson, called the Detection Profile Method (DPM). We
evaluate these proposed enhancements and identify one that
improves over the DPM. We then compare the improved
DPM to the best C/R Model found in [6], and propose a
selection procedure that selects between the DPM and the
best C/R Model. An evaluation of this selection procedure
indicates that it provides the same accuracy as C/R Models
but has an important characteristic that makes it more usable
in practice: it does not exhibit extreme outliers in its
estimates. This advantage should give confidence in the
estimates selected by the procedure.

In the following section we provide an overview of the
two defect content estimation methods that we consider in
this paper, and then state our research objectives. In Section
3 we describe our empirical research method and the data
sources used for evaluation. This is followed by our
approach for enhancing the DPM method, and its
evaluation, in Section 4. Section 5 consists of a comparison
of the enhanced DPM method with C/R Models, and
Section 6 presents a procedure selecting between C/R
Models and the enhanced DPM, and its evaluation. We
conclude the paper in Section 7 with a summary and
directions for future research.

2. Basic Concepts of Defect Content 
Estimation Methods

In this section we present the two defect content
estimation methods under study. Section 2.1 presents C/R
Models and Section 2.2 presents the DPM. In Section 2.3
we present our research objectives.

2.1 Basic Concepts of Capture-Recapture Models

In order to describe the principles of C/R Models let us
take a look at one of the most basic models stated in terms
of inspections. Suppose a software artifact with a total of N
defects is inspected by two inspectors. The first inspector
detects n1 of these defects while the second inspector
detects n2 of these defects. Usually, both inspectors do not
detect exactly the same defects, thus let m2 be the number of
defects detected by both inspectors.

If we now assume, that each inspector has a probability
pi (i=1,2) of detecting defects, we have E(ni)=Npi and
E(m2)=Np1p2, where E(x) denotes the expected value of x.
Thus, we can denote N as

(Eq. 1)

and derive an estimator for the number of defects as

(Eq. 2)

This estimator is known in biology and wildlife research as
Lincoln-Peterson Estimator ([12],[16]).

One of the major differences between the various C/R
Models are the assumptions about the detection
probabilities. In Table 1 those models suitable for
inspections, their assumptions, as well as their
corresponding estimators are listed [6]. 

Model M0 assumes that the inspection can be described
by one parameter, namely the probability p that any defect
is detected by any inspector. Thus, it assumes that all defects
have the same probability of being detected and all
inspectors have the same probability to detect defects.
Model Mt relaxes this strict assumption by assuming that
each inspector i has associated a specific probability pi of
detecting any defect. Thus, this model still assumes that all
defects have the same probability of being detected.The
example presented above belongs to this model and the
Lincoln-Peterson Estimator is the Maximum-Likelihood
Estimator Mt(MLE) for two inspectors. Model Mh relaxes
the strict assumption of Model M0 by assuming that each
defect j can have a different probability pj of being detected,
which is the same for all inspectors. Finally, Model Mth
combines both alleviations by assuming that each inspector
i has a probability pi to detect defects and that each defect j
has a probability pj of being detected. The probability that
inspector i detects defect j becomes then .

In a previous study we have shown [6], that Model Mh
and Model Mth are the most appropriate ones for
inspections based on the dataset we evaluated. We
recommended the Jackknife Estimator Mh(JE) and Chao
Estimator Mh(Ch) for Model Mh when used in the context
of software inspections.

Model Assumptions on detectability Estimators

M0 Defects are equal with respect to their proba-
bility of being detected, the probability of 
detecting defects among inspectors is the 

same.

M0(MLE)

Mt Defects are equal with respect to their proba-
bility of being detected, the probability of 

detecting defects among inspectors varies.

Mt(MLE)
Mt(Ch)

Mh Defects have different probabilities of being 
detected, the probability of detecting defects 

among inspectors is the same.

Mh(JE)
Mh(Ch)

Mth Defects have different probabilities of being 
detected, the probability of detecting defects 

among inspectors varies.

Mth(Ch)

Table 1: Summary of Capture-Recapture Models for 
Inspections

N
E n1( ) E n2( )⋅

E m2( )
---------------------------------=

N̂
n1 n2⋅

m2
---------------=

pi pj⋅
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2.2 Detection Profile Method

According to Wohlin and Runeson [18], real inspections
usually violate the assumptions made by C/R Models, and
thus it is necessary to find estimation methods that do not
rely on these assumptions. Therefore, they proposed
alternative methods for defects content estimation. 

These methods are based on sorting and plotting defect
data. Assuming that a curve can be fitted through the actual
plot, the parameters of this curve can be determined and
used to estimate the total number of defects. Based on this
principle, Wohlin and Runeson present two graphical
methods [18]. These two methods differ in the criterion used
to plot the defect data and the selection of the curve to be
fitted. In this paper we consider only one of these methods,
namely the one that turned out to provide the more accurate
results in Wohlin and Runeson’s evaluation.

This method is called Detection Profile Method (DPM),
since a profile is created based on how many inspectors
detected each defect. For each defect, one calculates how
many inspectors detect that defect. The defects are then
sorted in descending order according to the number of
inspectors detecting them, and are plotted in a graph as
shown in Figure 1.

Wohlin and Runeson assume that:

(a) adding more inspectors will lead to more detected
defects; thus, after adding an appropriate number of
inspectors all defects will be detected, and 

(b) the data can be approximated by an exponential
function, then

we can now obtain an estimate by fitting a decreasing
exponential curve to the data:

(Eq. 3)

where mx indicates the total number of inspectors to find a
defect x, b is a factor describing the decrease of the
exponential function, and A is a constant. Taking the log on

both sides yields:

. (Eq. 4)

Linear regression can be used to estimate the parameters
A and b. Once these parameters are determined, the total
number of defects is determined by the largest x-value for
which Equation 3 provides a result larger than or equal to
0.5.

In [18] Wohlin and Runeson conclude that the
performance of the Detection Profile Method is not
statistically significantly better than the Maximum
Likelihood Estimator for the C/R Model Mt (in Table 1
denoted as Mt(MLE)). Nevertheless, the DPM showed
better results in terms of mean relative error and standard
deviation and should thus be considered for further
research. In addition, DPM has some appealing properties:
it is easy to operationalize using commonly available tools,
and its ease of visualization makes it intuitively appealing to
non-specialists who would have to apply the method in
practice.

2.3 Research Objective

In the preceding sections two different methods for
defect content estimation were presented. Each of these
approaches makes different assumptions. 

The fundamental assumption underlying Wohlin and
Runeson’s DPM is that the defect data fits an exponential
curve. However, they also point out that this assumption
might not be true in all circumstances. Therefore, we
enhance the DPM approach (1) by taking into account
different shapes a fitted curve might have and (2) by
providing a way to choose between these different curves.

After the DPM has been improved, we have to explore
the strengths and weaknesses of both the C/R Models and
the improved DPM. This enables us to provide a procedure
which selects the most appropriate defect content
estimation method in a given situation.

This selection is of value since C/R Models are not
appropriate in all conditions. The study in [6] found that
many C/R Models exhibit rare but extreme outliers in their
estimates when applied with real inspection data, even
though their aggregate behavior may be desirable (e.g., high
accuracy). An extreme outlier is a high over/under
estimation and points out conditions under which the
estimator should not have been applied.

From an applied point of view, extreme outliers pose a
dilemma. If an estimator provides accurate estimates most
of the time, but occasionally gives extreme values, can you
trust it most of the time? Most likely the answer is no, hence
making the, rather accurate, estimators unusable in practice. 

A selection procedure between C/R Models and the
DPM should try to overcome this drawback of C/R Models

Sample Application of Wohlin and Runeson’s DPM
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Figure 1: Example application of the Detection Profile 
Method.
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and result in estimates that do not produce outliers.
The remaining parts of the paper follows the objectives

stated above. The enhancement of the DPM is described in
Section 4, the comparison between C/R Models and the
DPM follows in Section 5, and Section 6 provides a
selection procedure between the two approaches. But first
we explain in the following section how we evaluate the
different estimation methods.

3. Approach for Evaluating Estimators

To evaluate different defect content estimation methods
we must estimate the defect content for several inspections
based on actual inspection data and judge their accuracy. In
this section we describe the criteria according to which we
evaluate, the data source for the inspection data, and how
we obtain defect content estimates.

3.1 Evaluation Criteria

In order to evaluate the different estimation methods, it
has to be determined how accurate the estimates are. For
this evaluation, we must be able to measure how close the
estimated value is to the actual value. As a measure of this
accuracy, we use the relative error (RE) defined as:

(Eq. 5)

The RE value allows us to distinguish between
overestimation (too many defects were estimated, thus, a
positive RE is obtained) and underestimation (too few
defects were estimated, thus, a negative RE is obtained).

When dealing with estimators, two properties of these
estimators should be investigated: bias and variability. 

The bias of an estimator tells us how accurate the
estimates are on average. It can be expressed as the central
tendency across a number of estimates. This can be, for
example, the mean or the median. A disadvantage of the
mean is that it is sensitive to extreme values or outliers. A
problem we are addressing in this paper is extreme over/
under estimation. Large outliers would distort the mean.
Therefore, bias is defined here as the median RE.

Besides the average RE of the various estimators, it is
also important to look at their RE variability. Variability
tells us whether a large variation around the central
tendency can be expected, e.g., whether extreme outliers
can be produced by the model. The inter-quartile ranges and
the possible presence of outlier values are used as measures
of variability.

In addition to these two properties, it has to be
investigated how often an estimate can be computed.
Almost for all estimators conditions exist where they fail to
provide an estimate. In order to assess, whether too large a

number of failures occurs, the failure rate of the estimators
has to be determined. We define the failure rate as the
percentage of estimates that fail (i.e., cannot be computed).

3.2 Data Source

The data that we use for our evaluation comes from
experiments to assess different reading techniques for
inspections. These experiments were performed between
1994 and 1995 at the NASA/Goddard Space Flight Centre
(NASA/GSFC) [2].

Since the goal of the experiments was to compare
reading techniques, they focused exclusively on the defect
detection step of an inspection process. All the data that is
considered here follow an “Ad-hoc” preparation process,
i.e., no specific reading technique was used. Neither
inspection meetings nor corrections to the inspected
documents were performed.

The documents being inspected during the experiments
were two actual requirements documents from NASA/
GSFC describing functional specifications for satellite
ground support software. They were structured according to
the IEEE standard [11] and the different requirements were
stated in natural language. 

All defects in these documents were detected during
subsequent development phases. 

The two different documents were inspected in two
experimental runs each. Since the documents were modified
for the second run, we treat both runs independently (i.e.,
we treat them as four different documents). 

The inspectors reading the documents were software
professionals at NASA/GSFC with various levels of
experience in the application domain and the development
techniques used. This can therefore be considered
representative of the circumstances in actual projects.

3.3 Evaluation Strategy

Since the experiment described above focused on the
detection step of an inspection, no meetings were performed
during the experiment. However, any number or
combination of inspectors could be grouped and called a
“virtual inspection meeting”. 

The number of inspectors was systematically varied
between two and six. This can be considered as
representative for real-world inspections [3], [5], [15].
Additionally, it has been shown [6] that the number of
inspectors has an influence on the accuracy of C/R Models
and, thus, should be taken into account here.

For our evaluation, we compiled all possible “virtual
inspection meetings” for a given number k ( ) of
inspectors and for all documents. For example, if for a
document a total of six inspectors were available and

RE
estimated # of defects actual # of defects–

actual # of defects
------------------------------------------------------------------------------------------------------=

2 k 6≤ ≤
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inspections with three inspectors were investigated, 20
“virtual inspection meetings” are then formed (there are 20
ways in which three inspectors can be selected from six).
For each of these “virtual inspection meetings” an estimate
was obtained with each estimator that is under evaluation.
This is repeated for each of the four documents.

Bias and variability for a given estimator and number of
inspectors was then determined by computing the median
RE and the inter-quartile range, as well as the absolute
maximum values for all combinations from that estimator
and k inspectors.

4. Evaluation and Enhancements of DPM

In this section we propose a number of enhancements to
the DPM. We then evaluate these alternative enhancements
and select the one that is most promising.

4.1 Strategies for Detection Profile Method

The basic concepts behind the DPM have been outlined
earlier. The basic assumption behind Wohlin and Runesons
DPM proposal is that an exponential curve can be fitted
through the plot. But they also indicate that other curves
might be more appropriate as well.  

Actually, there are situations where fitting a decreasing
exponential curve to the inspection data may not be
appropriate as this leads to highly inflated estimates. For
instance, this will occur when there are no defects found by
exactly one inspector. This could happen, for example,
when a large number of inspectors participate. When fitting
an exponential curve, the last number of defects that
provides a value greater than 0.5 can be quite large. For
example, consider the situation in Figure 2. Here we have an
inspection where 13 defects were found and there are
actually 15 defects in the document. No defects were found
by exactly one inspector. Application of DPM would
provide us with a highly inflated estimate of defect content.

In addition, visual inspection of real inspection data
indicated to us that an exponential fit may not always be the
most appropriate. For example, consider the data in Figure
3 which comes from one inspection in our data set. Here a
linear fit gives an R2 value of 0.92, whereas the exponential
curve has an R2 value of 0.84. In addition, the estimate from
the linear fit is closer to the actual than that from the
exponential fit. This indicates that, in some cases, a linear fit
may perform better than an exponential fit. This represents
an alternative strategy to fitting a curve to the data. 

To apply this strategy, there must be objective criteria for
selecting the type of curve to fit (i.e., exponential vs. linear).
We propose two alternative criteria:

• R2 Criterion: Select the fit that has the largest R2

value (i.e., the best goodness of fit). Intuitively, this
would seem to be a good enough criterion. However,
in some cases when the number of defects found by
one inspector is zero, the exponential curve may still
provide a very good fit on the range where data are
available, but also an inflated estimate due to an
inaccurate extrapolation of the model. Therefore, we
consider an alternative criterion.

• Strict Order Criterion: The second criterion that
we propose is a rather strict one for selecting an
exponential fit:

(Eq. 6)

where k is the number of inspectors and fi is the
number of defects found by exactly i inspectors. This
ordering would be expected if the underlying true
relationship is exponential, and ensures that an
exponential fit would serve better than a linear fit.

Application of DPM where no defect was detected by exactly one inspector
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Example where exponential is not appropriate
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Using this criterion, the situation where f1=0 will
lead to the selection of linear fit.

4.2 Comparison of DPM Strategies

We now evaluate each of the four strategies outlined
above: always fit exponential (original Wohlin and Runeson
strategy), always fit linear, select between exponential and
linear based on R2, and select between exponential and
linear based on the strict order criterion.

The results of comparing these four strategies are given
in Figure 4 (In this and the following boxplots we use the
following notation: the interquartile range is denoted as a
box and a data point is deemed to be an outlier if the
following conditions hold: datapoint>UBV+1.5*(UBV-
LBV) or datapoint<LBV-1.5*(UBV-LBV), where UBV is
the 75th percentile and LBV is the 25th percentile. For
extreme values the factor 1.5 is changed to 3.0). 

Additionally, numeric comparison of bias and variability
are provided in Table 2 to Table 4, where the different
approaches are ranked. In general, while the exponential fit
strategy in some cases has less bias (e.g., see three
inspectors) than the other strategies, it consistently has
extreme outliers and also high variability. Since one of the
problems witnessed with other approaches for estimating
defect content has been extreme outliers, then this strategy
is clearly less preferred.  

Out of the three other strategies, the strict order and
linear fit strategies consistently have the least amount of
variability. However, except for six inspectors, the strict
order strategy has less bias. The R2 selection strategy
exhibits extreme outliers for 3, 4, and 5 inspectors, and has
a large variation compared to the strict order strategy for 6
inspectors. Therefore, we conclude that the strict order
strategy is the best one out of the four.

For the remainder of this paper we refer to the strict order
selection strategy between the exponential and linear fits as
the Enhanced DPM approach (EDPM).

5. Comparison of the EDPM with Capture-
Recapture Models

The original motivation for the DPM approach was to
introduce alternative defect content estimation methods
making less restrictive assumptions than C/R Models.

2 insp. 3 insp. 4 insp. 5 insp. 6 insp.

Rank1 Order
R

(0.0000)

Exp
(0.0000)

Exp
(0.0666)

Order
R

(0.0666)

Order
Lin

(0.0666)

Rank2 Order
R

(0.1333)

R
(0.1000)

Table 2: Bias in terms of absolute median relative error for 
different DPM Strategies
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Fitting Linear
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Selection with Order
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Figure 4: Comparing different Detection Profile Strategies

Rank3 Exp
(0.1000)

Order
(0.1333)

Exp
Lin

(0.1333)

R2
(0.1333)

Rank4 Lin
(0.2000)

Lin
(0.2666)

Lin
(0.1666)

Exp
(0.2333)

2 insp. 3 insp. 4 insp. 5 insp. 6 insp.

Rank1 Order
Lin
R

(2.3333)

Order
Lin

(1.2666)

Order
Lin(

0.4000)

Order
Lin

(0.2666)

Order
Lin

(0.0666)

Rank2

Rank3 Exp
R

(3.4000)

Exp
R

(1.4000)

Exp
R

(1.2222)

Exp
R

(0.8666)

Rank4 Exp
(3.3333)

Table 3: Variability in terms of outliers (maximum values) 
for different DPM strategies
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Rank1 Lin
(0.5000)

Order
(0.4666)

Lin
(0.5000)
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(0.4000)

Order
Lin

(0.1333)

Rank2 R
(0.5333)

R
Lin
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Order)
R

(0.5333)
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R

(0.4666)

Rank3 Order
(0.6000)
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(0.2666)

Rank4 Exp
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(0.6000)

R
(0.4000)

Table 4: Variability in terms of quartile-range for different 
DPM strategies

Table 2: Bias in terms of absolute median relative error for 
different DPM Strategies
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Therefore, it would be prudent to compare the EDPM
approach with the C/R Models to see if this relaxation of
assumptions has any impact.

In a previous study [6] using the same data set that we are
using in our current study we found that among all C/R
Models the Model Mh was preferred. Therefore, it would be
appropriate to compare Model Mh with the EDPM. Two
estimators for Model Mh are considered, the Jackknife
Estimator Mh(JE), and the Chao Estimator Mh(Ch) [6]. We
also compare the EDPM approach with the Model Mt
(Mt(MLE)) since this is the one that was used for
comparison purposes in [18].

The results of this comparison are shown graphically in
Figure 5. The different approaches are ranked in terms of
their bias and variability in Table 5 to Table 7. In general, it
can be seen that the EDPM approach is not a major
improvement over C/R Models. In terms of bias, EDPM is
comparable with Model Mh although it does not provide
better results. In terms of variability, C/R Models out-
perform the EDPM approach for all numbers of inspectors
except six, in which case it is tied with Model Mt.
Therefore, despite its promise, the EDPM approach cannot
be considered as a major improvement over the best existing
C/R Models.

6. Selecting between EDPM and C/R Models

A potential strategy for selecting between the EDPM
estimate and the C/R estimate is to select the estimate that is
better or most trust-worthy. In this section we present the
rationale for a selection procedure, and then present the
procedure itself, followed by its evaluation. During this
evaluation we would like to answer the question: “does the
selection procedure provide better results than the EDPM
approach and the best C/R Model used in isolation?”. 

6.1 Strategy for a Selection Procedure

To motivate our selection strategy we first look at the
relationship between the R2 value from using EDPM and
the relative error. For various numbers of inspectors, this is
presented in Figure 6. We also make a distinction between
the R2 values that are statistically significant at an alpha
level of 0.01, and those that are not. When there are a few
inspectors (i.e., small inspection teams) or few defects
discovered, the fit in the EDPM approach is made with very
few observations. This can provide high R2 values, but is
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Figure 5: Comparison between best C/R Models and best 
DPM Strategy.
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Table 6: Variability in terms of outliers (maximum values) 
for C/R and EDPM.
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Rank1 Mt(MLE)
(0.4)

Mt(MLE)
(0.4)

Mh(Ch)
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Mh(JE)
(0.1999)

EDPM
Mt(MLE)
(0.133)

Rank2 EDPM
(0.6)

Mh(Ch)
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Mt(MLE)
(0.4)
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Rank3 Mh(JE)
(0.6444)

EDPM
(0.4666)

Mh(JE)
(0.4333)

Mt(MLE)
(0.3334)

Mh(JE)
(0.1999)

Rank4 Mh(Ch)
(0.8666)

Mh(JE)
(0.6666)

EDPM
(0.5333)
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(0.2)

Table 7: Variability in terms of quartile ranges for C/R and 
EDPM.

Table 5: Bias in terms of absolute median relative error for 
C/R and EDPM.
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misleading because the fit would be quite unstable. Hence
the importance of taking into account the statistical
significance of the EDPM fit in addition to the R2 value.
Based on the number of virtual inspections analyzed, a p-
value of 0.01 is selected to ensure that only a small number
of R2 values is wrongly accepted as statistically significant.

Visual inspection of the scatterplots indicates that large
statistically significant R2 values tend to cluster around zero
RE. This behavior suggests that the EDPM method would
likely provide reasonable results whenever the R2 value is
above a certain threshold and is statistically significant. We
choose an R2 threshold of 0.8. However, we found that the
results of our evaluations are quite insensitive to variations
of threshold value (up to 0.9 and down to 0.7).

Figure 7 provides an illustration where we compare the
EDPM results with those of the three C/R Models for the
case where the R2 value is above the threshold and
significant (upper panel), and when it is not (lower panel).
As can be seen in the upper panel, the EDPM approach has
generally consistently low bias for different numbers of
assessors and does not exhibit the extreme outliers that the
C/R models exhibit. If we look at the lower panel, we find
that the EDPM bias is affected quite a bit by the number of
inspectors, and for a low number of inspectors has some
outliers.

The selection strategy then involves selecting either an
estimate of a C/R Model or the EDPM estimate. If the R2

value for the EDPM approach is greater than 0.8 and
statistically significant, then select the EDPM estimate,
otherwise select the C/R estimate. Since in a previous study
it was found that, in general, the model Mh with the
Jackknife Estimator is the most appropriate C/R Model [6],
we use that estimator in our selection procedure.  

6.2 Evaluation of the Selection Procedure

The results of the comparison of this selection procedure
with Model Mh and the Jackknife Estimator and the EDPM
approach are provided in Figure 8. We can see from this
figure that the selection approach consistently provides
good bias for more than three inspectors, and it does not
suffer from extreme outliers as the other two approaches do.
For less than four inspectors, the selection approach has a
larger bias, but this is comparable to the C/R Model for 2
inspectors and comparable to both the C/R Model and
EDPM approach for three inspectors. However, it does not
yield extreme estimates as the EDPM approach does. 

Based on this result we can conclude that:

• For two or three inspectors, there is not much
difference between using the Jackknife Estimator for
Model Mh, Mh(JE), and our selection procedure.

• For more than three inspectors, the selection

procedure will provide consistently more reliable
estimates (i.e., no extreme over/under estimation)
and has similar bias to the C/R Model and the EDPM
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Figure 6: Relationship between R2 and relative error
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approach.
These two findings make it reasonable to recommend

using the selection procedure since users can have a high
degree of confidence in the estimates i.e., they are not likely
to yield extreme errors which would lead to either a
substantial waste of inspection effort or a larger amount of
defect slippage to the next development phase. This
conclusion is strengthened by the fact that the bias obtained
by the selection procedure is comparable to other
approaches, and therefore shows gains without any loss.

An additional advantage of the selection procedure is
that the selection of EDPM indicates a reliable estimate.
The upper part of Figure 7 shows that in this case a low bias
and small inter-quartile range can be expected.

It is also informative to look at the failure rates of all the
methods that we have considered. This is summarized in
Table 8. The methods that are based on the DPM, including
EDPM, will fail if all defects were found by the same
number of inspectors. In such a case the fitted curve may not
approach the x-axis (for example, a linear fit would be a
horizontal line). It is also worthy of notice that the selection
procedure gives consistently better or equally good results
as all the other alternatives, whereby it fails very
infrequently. This characteristic also makes it more
attractive for use in practice since it is more likely to give an

estimate, even for a small number of inspectors.

7. Summary and Conclusions

The objective of the study reported in this paper was
threefold: (1) assess the Detection Profile Method (DPM)
proposed by Wohlin and Runeson, (2) try to refine the DPM
based on the results obtained in (1), (3) design a selection
procedure to choose between C/R Models and the DPM
method. Our goal was to improve the applicability of defect
content estimation of inspected documents in realistic
conditions. A previous study had identified that extreme
outliers in C/R estimates are a potential problem that may
limit the application of C/R Models: if a model works well
most of the time, but occasionally provides extreme over/
under estimates, it would be difficult to trust its estimates.
The new selection procedure proposed in this paper
alleviates some of the weaknesses of the DPM approach,
and takes advantage of the strengths of C/R Models. It was
evaluated using actual inspection data.
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Figure 7: Selecting R2 as threshold.
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comb.)

6 insp.
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comb.)

Fitting Exponential 27% 8% 0% 0% 0%

Fitting Linear 27% 8% 0% 0% 0%

Selection with R2 27% 8% 0% 0% 0%

EDPM 27% 8% 0% 0% 0%

Selection Proc. 0% 2% 0% 0% 0%

Mh(JE) 0% 8% 0% 0% 0%

Mh(Ch) 29% 12% 9% 13% 10%

Mt(MLE) 29% 2% 0% 0% 0%

Table 8: Failure Rate (percentage of estimates that fail) for 
all methods
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and C/R Models
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Our evaluation results indicate that the DPM approach
does not improve over the best C/R Model. In addition,
although the improvements to DPM we proposed here
provide better estimates than the original DPM approach,
they still do not significantly improve over C/R Models.
However, most importantly, the selection procedure shows
as little bias in the estimates as the best C/R Models alone,
but that it does not exhibit the extreme outliers that are often
a characteristic of C/R estimates in the context of
inspections. This result is encouraging in that it provides a
solution that is more likely to be trusted, and hence adopted,
in practice.

Further research in this area ought to consider improving
the accuracy of the selection procedure of defect content
estimation models. In particular, none of the approaches we
have looked at provides completely satisfactory accuracies
for inspections with a low number of inspectors.

Additionally, the results obtained in this study should be
validated using alternative data sets from additional
environments.
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