
Using Simulation to Build Inspection Efficiency Benchmarks
for Development Projects

International Software Engineering Network Technical Report ISERN-1997-21

Lionel Briand, Khaled El Emam, Oliver Laitenberger
Fraunhofer IESE

Sauerwiesen 6
D-67661 Kaiserslautern

Germany
{briand,elemam,laiten}@iese.fhg.de

Thomas Fussbroich
Department of Computer Science

University of Kaiserslautern
D-67653 Kaiserslautern

Germany
fussbroi@informatik.uni-kl.de

Abstract
It is difficult for organizations introducing and using
software inspections to evaluate how efficient they are.
However, it is of practical importance to determine whether
they have been effectively implemented or whether
corrective actions are necessary to bring them up to
standard. We present in this paper a procedure for building
inspection efficiency benchmarks based on simulation and
typical inspection data. Based on most of the data published
in the literature, we build an industry-wide benchmark
which intends to capture the current practice regarding
inspection efficiency. Moreover, we discuss how this
benchmark construction procedure can be used to build
enterprise specific benchmarks. Last, we assess how robust
we can expect them to be in varying conditions by distorting
their input distributions.

Keywords
Software Inspection, Inspection efficiency, Quality
modeling, Simulation.

1 Introduction
There exists a compelling business case for early defect
detection using inspections. For example, some authors state
that technical document reviews can reduce the number of
defects reaching testing by ten times [13]. Furthermore, the
ratio of the cost of fixing defects during inspections to fixing
them during formal testing at JPL was found to range from
1:10 to 1:34 [21]. At the IBM Santa Teresa Lab the cost ratio
was 1:20 [31], at the IBM Rochester Lab it was 1:13 [20],
and the cost ratio for design inspections to testing at TRW
was 1:6.25 [3]. The business case is even more impressive
when one considers the cost of fixing defects postrelease.
Other nonquantifiable benefits of inspections have been
reported, such as promoting team spirit, the transfer of skills
and facilitating on-the-job training [8].

As with the introduction of any other new technology, the
introduction of inspections ought to be properly evaluated
[22]. Furthermore, after initial implementation, inspections
can be continuously evaluated and optimized to improve

their performance.

In this paper, our focus is on evaluating the efficiency of
inspections. Efficiency characterizes the cost-effectiveness
of detecting defects by inspections. Cost effectiveness is
defined as the extent to which the savings achieved are worth
the costs.

From a practical perspective, the evaluation of efficiency
implies two requirements. First, a measure of efficiency is
necessary. Second, and more importantly, we need a means
to interpret the measured value (i.e., is the obtained
efficiency value good or bad?).

In the measurement literature, the interpretation of measured
values can be norm-referenced or criterion referenced [1].
With norm-referenced evaluation, one compares the
obtained value of inspection efficiency with the efficiency
values obtained in other inspections. With criterion-
referenced evaluation, one compares the obtained value with
a threshold to determine whether it is above or below (i.e.,
better or worst).

Since there is no clear general basis for defining an
efficiency threshold, the criterion-referenced approach
would be difficult to operationalize. With the norm-
referenced approach, one effectively defines a benchmark.
An industry-wide benchmark can be constructed using data
from the published literature. Published inspection data have
been used in the past to evaluate inspections (see for
example [15][26]), but no attempt to consolidate this
information into an industry-wide benchmark has been
made.

Using the efficiency measure developed by Kusumoto [24]
as the basis, we construct three different 5 level industry-
wide design and code inspections benchmarks for for three
different defect detection life cycles within software
development projects. The benchmarks use data from the
published literature and represent companies that have
successfully implemented inspections. The construction of
the benchmark employs Monte Carlo simulation to take into
account the uncertainty in the data obtained from the
literature (e.g., the variation of application contexts and
precision in measurement). Furthermore, we evaluate the
benchmarks’ robustness to violations of some important
assumptions made during their construction, and
demonstrate that most of the time they are sufficiently
robust.

.

Using Simulation to Build Inspection Efficiency Benchmarks
for Development Projects

Lionel Briand, Khaled El Emam, Oliver Laitenberger
Fraunhofer IESE
Sauerwiesen 6

D-67661 Kaiserslautern
Germany

{briand,elemam,laiten}@iese.fhg.de

Thomas Fussbroich
Department of Computer Science

University of Kaiserslautern
D-67653 Kaiserslautern

Germany
fussbroi@informatik.uni-kl.de

In summary, then, we have packaged the current state of
published knowledge about the efficiency of design and code
inspections into a form that is usable for industry-wide
benchmarking. Furthermore, the general procedure that we
have followed can be used by organizations to develop their
own internal enterprise-wide benchmarks.

The overall process that we follow is depicted in Figure 1. In
Section 2 we review existing efficiency measurement
models and identify the one most suitable for benchmarking.
Section 3 presents the data set we used as the basis of our
inspection efficiency benchmarks, and the distributions for
the input parameters in the efficiency model. Section 4
describes the results of the simulation from which we derive
benchmarks, and examines the robustness of the
benchmarks. In Section 5 we conclude the paper with an
overall summary and directions for future research.

2 Efficiency Models for Software Inspections

2.1 Notation
Below we define a general notation for characterizing defect
detection phases in a project. This allows us to subsequently
describe existing efficiency models in a consistent and
unambiguous manner.

We assume that there are n defect detection phases that are
performed sequentially1. Our assumed unit of analysis is the
development project.

We define the effort consumed to detect and fix all defects
during a defect detection phase f:

We define the set of unique defects existing in a document
prior to a defect detection phase f as:

1.This does note exclude cycles during defect detection (e.g., inspecting a
document for the second time) since each iteration can be considered a
sequence.

The |αf| value is difficult to measure accurately in practice.
One approach is to estimate this by the total number of
defects found by the time of completion of all defect
detection phases f to n. An extension of this approach is to
have |αf| only equal the subset of total defects found by the
time of completion that should have been caught by defect
detection phase f. This is determined by an analysis of all
defects and determining the source of the defect in the
development life cycle.

We define the set of defects found during a defect detection
phase f as:

In the case of inspections, |λf| would be the number of
defects logged during a collection meeting for example.

The estimated cost of finding and fixing a defect in a defect
detection phase across all instances of is defined as:

where the bar on top indicates an average. The estimate can
be calculated based on data from other projects, or can be
calculated a posteriori for the project under study.

The defect detection effectiveness of a defect detection phase
f across all instances of is given by:

This can also be interpreted as the probability of finding a
defect during phase f.

2.2 Literature Review
We now briefly present most of the efficiency models
presented in the literature that we deemed relevant for our
purpose. It should be noted that we only consider efficiency
models that explicitly take cost into account. Therefore, even
though Fagan [10], Jones [19], Remus [31] and Collofello
and Woodfield [6] introduce models of error detection
efficiency or defect removal efficiency, these models are not
efficiency models according to our definition since they do
not consider costs.

Basic Model
A simple model for the evaluation of efficiency is presented
in [14]. This is a measure of how well effort consumed is
made use of, and is defined as defects found per some unit of
time (e.g., work-hour). In our notation, it is:

However, this model does not account for defect detection

Define efficiency model

Define distributions for the
input parameters to the effi-

ciency model

Perform simulation to con-
struct a benchmark

Evaluate the robustness of
the benchmark

Figure 1: Benchmark development process.

εf = effort spent on finding and fixing a defect in defect
detection phase f [person-hours]

αf = { x | x is a defect that exists in the document
prior to defect detection phase f }

λf = { x | x is a defect detected during defect
detection phase f }

f f

ε̂f

εf
λf

person-hours

defect
-------------------------------=

f

p̂f
λf

αf

 =

A
ˆ

f
1

ε̂f
----=

phase f compared to subsequent defect detection phases in
the development life cycle (i.e., what is the relative
advantage of detecting defects earlier). Therefore, only the
costs of phase f are taken into account, but not any potential
savings.

Collofello and Woodfield’s Efficiency Model
Collofello and Woodfield [6] defined efficiency in general
as:

Assuming a defect detection phase detected and removed
defects from a software artifact, we consider that if these
defects had not been removed during , they would have
been removed in a later defect detection phase. Therefore,
the potential costs associated with detecting and correcting
the defects in later phases are saved by conducting .

Based on this assumption, the costs saved by some phase
is calculated as the sum of the costs that would be incurred
with having to use phases to to handle the defects

detected by phase . Since the model was not formalized in
the original paper, in the following we interpret and
formalize this model

The full equation for efficiency can be expressed as:

where γi is the subset of defects that were detected by , but

that would escape detection in phases to if
was not performed.

For each phase subsequent to phase , where ,
we calculate the costs saved as the product of the estimated
effort per defect for phase multiplied by the number of

defects expected to be detected by phase . The number of

defects expected to be detected by phase is calculated as

the product of the effectiveness of phase and |γi|.

The value of |γi| is given by:

This is the product of the number of defects that were
detected and removed during phase and the probability

that the defect would not have been found during defect
detection phases preceding i.

ROI-model
An alternative model that builds on the Collofello and
Woodfield work is the Return on Investment model used at
HP [12]. In particular, the value of costs saved in the
Collofello and Woodfield model does not consider the cost
of defect detection phase itself in calculating the savings.
Therefore, the costs saved numerator is changed by
subtracting the costs consumed by . This is an
improvement in that now we consider the real costs saved.
Although in practice this correction involves the addition of
a constant and therefore preserves the same order and
distance amongst values of efficiency, it is a more valid
formulation. Such a model can be expressed as follows:

Kusumoto’s Efficiency Model
Kusumoto [24] noticed a discrepancy in the application of
models such as above. The discrepancy can de

demonstrated with reference to the two projects in Figure 2.
These projects only have two defect detection phases. In
both projects, if inspections had not been done, the cost of
testing would be 1000 units. The first inspection consumes
10 units of cost, and saves 100 units. Therefore, the total cost
is 910. The second inspection costs 60 units, and saves 600.
The total cost is 440. In the second case, inspections saved
much more of total defect detection costs than the first,
therefore one would expect it to be more efficient. However,
using the ROI model, for example, would give them both an
efficiency of 9.

To address this problem, Kusumuto proposes a new model.

B
ˆ

f
Costs saved by the defect detection phase f

Costs consumed by the defect detection phase f
---=

f

f

f

f

f 1+() n

f

B
ˆ

f

ε̂i p̂i γi×()×
i f 1+=

n

∑

ε̂f λf×
---=

f
f 1+ i 1– f

i f f i< n≤

i
i
i

i

γi

λf i f 1+=,

λf 1 p̂k–()

k f 1+=

i 1–

∏× i f 1+>,

=

f

f

f

C
ˆ

f

ε̂i p̂i γi×()×
i f 1+=

n

∑

ε̂f λf×()–

ε̂f λf×
--=

Figure 2: Comparing two different inspections.

Costs

Inspections
Testing

400 1000

60

Costs

Inspections
Testing

900 1000

10
Savings

Savings

Cf

He first introduces the concept of virtual testing cost. This is
the total cost of testing if no inspections were conducted at
all. He suggests that instead of using the costs consumed as
the denominator, we should use the total potential cost that
would be consumed had inspections not been conducted
(i.e., the virtual testing cost).

Using our notation, Kusumoto defined efficiency as:

This model can be generalized to any sequence of defect
detection phases as follows:

where:

The interpretation of this model is quite intuitive. It can be
interpreted as the proportion of defect detection costs that are
saved due to the introduction of phase f. For example, if the
value is 0.25, this means that 25% of the defect detection
costs are saved, and now only 75% of defect detection costs

are consumed to find the same number of defects.

2.3 Discussion
Each successive model we presented above represents a
further step in sophistication in capturing the efficiency of
inspections. The most appropriate model is , since it is

addresses the weaknesses of previous efficiency models.
However, there remains a set of assumptions embedded
within this model. The assumptions are necessary to obtain
an efficiency model that can be easily operationalized in
practice. The assumptions are presented below:

1. No new defects are introduced between phases f and n.

2. A defect found in a phase i would result in a single defect
in subsequent phases.

In practice, every model must have a predefined scope. The
the scope of the efficiency model is defined by the sequence
of defect detection phases. For any scope, it is necessary to
assign the defect detection effectiveness of phase to 1.

In our formalization above we do not take into account
different defect types. While this would be a simple
extension of the efficiency model, we do not do so because
for the purposes of constructing an industry-wide
benchmark, consistent data that would make use of such an
extension was not found in the literature

3 Industry Data
In this section, we present the inspection data that match the
model’s input variables and published in the software
engineering literature. It is expected that these data come
from companies that have had some success in implementing
inspections.

We consider three different defect detection life cycles for
development projects. The first is code inspection, and
testing (life cycle CT). The second is design inspections,
code inspections, and testing (life cycle DCT), and the third
design inspections and testing (life cycle DT). The

D
ˆ

f
λf ε̂testing× λf ε̂inspection×–

α f ε̂testing×
--=

E
ˆ

f

ε̂i p̂i γi×()×
i f 1+=

n

∑

ε̂f λf×()–

ε̂j p̂j αj×()×
j f 1+=

n

∑
--=

αj

αf j f 1+=,

αf 1 p̂k–()

k f 1+=

j 1–

∏× j f 1+>,

=

Ef

n

Efficiency for the CT life cycle:

Efficiency for the DT life cycle:

Efficiency for the DCT life cycle:

E
ˆ

f p̂Code Inspection 1
ε̂Code Inspection

ε̂Test

--------------------------------–

×=

E
ˆ

f p̂Design Inspection 1
ε̂Design Inspection

ε̂Test

-----------------------------------–

×=

E
ˆ

f p̂Design Inspection 1
ε̂Design Inspection

ε̂Code Inspection p̂Code Inspection×() ε̂Test 1 p̂Code Inspection–()×()+
--–

×=

Figure 3: Operational equations for the efficiency of the three life cycles.

operationalization of efficiency for each of these three life
cycles is presented in Figure 3.

The five values that we wish to obtain industrial values for
are those that are based on historical data in our model.

These are: , , and (the

average effort per defect for the three defect detection

phases), and and (the

effectiveness of design and code inspections).

3.1 Effectiveness of Defect Detection Phases ()

In the following, the articles that give data on effectiveness
are discussed.

Fagan [10] presents data from a development project at
Aetna Life and Casualty, Hartford, Connecticut, USA. An
application program of eight modules (4439 non-
commentary source statements) was written in Cobol by
two programmers. Design and code inspections were
introduced into the development process, the number of
inspection participants ranged between three and five. After
6 months of actual usage, 46 defects had been detected
during development and usage of the program. Fagan reports
that 38 defects had been detected by design and code
inspections together, yielding a defect detection
effectiveness for inspections of 82%. The remaining 8
defects had been found during unit test and preparation for
acceptance test.

In another article, Fagan [11] publishes data from a project at
IBM Respond, United Kingdom. A program of 6271 LOC in
PL/1 was developed by 7 programmers. Over the life cycle
of the product, 93% of all defects were detected by
inspections. He also mentions two projects of the Standard
Bank of South Africa (143 KLOC) and American Express
(13 KLOC of system code), each with a defect detection
effectiveness for inspections of over 50% without using
trained inspection moderators.

Weller [34] presents data from a project at Bull HN
Information Systems which replaced inefficient C code for a
control microprocessor with Forth. After system test had
been completed, code inspection effectiveness was around
70%.

Grady and van Slack [16] report on experiences from
achieving widespread inspection use at HP. In one of the
company’s divisions inspections (focusing on code)
typically found 60 to 70% of the defects.

Shirey [32] states that defect detection effectiveness of
inspections is typically reported to range from 60 to 70%.

Barnard and Price [5] cite several references and report a
defect detection effectiveness for code inspections varying
from 30 to 75%. In their environment at AT&T Bell
Laboratories, the authors achieved a defect detection
effectiveness for code inspections of more than 70%.

McGibbon [26] presents data from Cardiac Pacemakers Inc.

where inspections are used to improve the quality of life
critical software. They observed that inspections removed 70
to 90% of all faults detected during development.

Collofello and Woodfield [6] evaluated reliability-assurance
techniques in a case study - a large real-time software project
that consisted of about 700,000 lines of code developed by
over 400 developers. The project was performed over
several years recording quality-assurance data for design,
coding, and testing. The respective defect detection
effectiveness are reported to be 54% for design inspections,
64% for code inspections, and 38% for testing. Although the
authors state that testing efforts are normally identifiable as
unit testing, integration testing, and acceptance testing, they
do not provide more detail on the testing procedures in the
project under examination.

Kitchenham et al. [23] report on experience at ICL, where
57.7% of defects were found by software inspections. The
total proportion of development effort devoted to inspections
was only 6%.

Gilb and Graham [14] include experience data from various
sources in their discussion of the benefits and costs of
inspections. IBM Rochester Labs publish values of 60% for
source code inspections, 80% for inspections of pseudocode,
and 88% for inspections of module and interface
specifications.

Grady [15] performs a cost/benefit analysis for different
techniques, among them design and code inspections. He
states that the average percentage of defects found for design
inspections is 55%, and 60% for code inspections.

Jones [27] discusses defect-removal effectiveness in the
context of evaluating current practices in US industry. He
gives approximate ranges and averages of defect detection
effectiveness for various activities.

Franz and Shih [12] present data from code inspection of a
sales and inventory tracking systems project at HP. This was
a batch system written in COBOL. Their data indicate that
inspections had 19% effectiveness for defects that could also
be found during testing.

Meyer [27] performed an experiment to compare program
testing to code walkthroughs and inspections. The subjects
were 59 highly experienced data processing professionals
testing and inspecting a PL/I program. Myers reports an
average effectiveness value of 0.38 for inspections.

3.2 Average Effort per Defect()

In this section, the data on the average effort per defect for
various defect detection techniques (design inspections, code
inspections, testing) is summarized.

Ackerman et al. [2] present data on different projects as a
sample of values from the literature and from private reports.
As the inspection process is described in the article as a six-
step process including rework and follow-up, the data should
mirror the cost of finding and fixing defects.

ε̂ Design Inspection ε̂ Code Inspection ε̂Test

p̂Design Inspection p̂Code Inspection

p̂f

ε̂f

The development group for a small warehouse-inventory
system used inspections on detailed design and code. For
detailed design, they reported 3.6 hours of individual
preparation per thousand lines, 3.6 hours of meeting time per
thousand lines, 1.0 hours per defect found, and 4.8 hours per
major defect found (major defects are those that will affect
execution). For code, the results were 7.9 hours of
preparation per thousand lines, 4.4 hours of meetings per
thousand lines, and 1.2 hours per defect found.

A major government-systems developer reported the
following results from inspection of more than 562,000 lines
of detailed design and 249,000 lines of code: For detailed
design, 5.76 hours of individual preparation per thousand
lines, 4.54 hours of meetings per thousand lines, and 0.58
hours per defect found. For code, 4.91 hours of individual
preparation per thousand lines, 3.32 hours of meetings per
thousand lines, and 0.67 hours per defect found.

Two quality engineers from a major government-systems
contractor reported 3 to 5 staff-hours per major defect
detected by inspections showing a surprising consistency
over different applications and programming languages.

A banking computer-services firm found that it took 4.5
hours to eliminate a defect by unit testing compared to 2.2
hours by inspection (probably code inspections).

An operating-system development organization for a large
mainframe manufacturer reported that the average effort
involved in finding a design defect by inspections is 1.4
staff-hours compared to 8.5 staff-hours of effort to find a
defect by testing.

Weller [34] reports data from a project that performed a
conversion of 1200 lines of C code to Fortran for several
timing-critical routines. While testing the rewritten code, it
took 6 hours per failure. It was known from a pilot project in
the organization that they had been finding defects in
inspections at a cost of 1.43 hours per defect. Thus, the team
stopped testing and inspected the rewritten code detecting
defects at a cost of less than 1 hour per defect.

McGibbon [26] discussed software inspections and their
return on investment as one of four categories of software
process improvements. For modeling the effects of
inspections, he uses a sample project of an estimated size of
39.967 LOC. It is assumed that if the cost to fix a defect
during design is 1X, then fixing design defects during test is
10X and in post-release is 100X. Thus, the rework effort per
defect for different phases is assumed to be 2.5 staff hours
per defect for design inspections, 2.5 staff hours for code
inspections, 25 staff hours for testing, and 250 staff hours for
maintenance (customer-detected defects).

Collofello and Woodfield [6] discuss a model for evaluating
the efficiency of defect detection. In order to conduct a
quantitative analysis, they needed to estimate some factors
for which they had not enough data. They performed a
survey among many of the 400 members of a large real-time
software project who were asked to estimate the effort

needed to detect and correct a defect for different techniques.
The results were 7.5 hours for a design error, 6.3 hours for a
code error, both detected by inspections, 11.6 hours for an
error found during testing, and 13.5 hours for an error
discovered in the field.

Kitchenham et al. [23] report on experience at ICL where the
cost of finding a defect in design inspections was 1.58 hours.

Gilb and Graham [14] include experience data from various
sources in their discussion of the benefits and costs of
inspections. A senior software engineer describes how
software inspections started at Applicon. In the first year, 9
code inspections and 39 document inspections (other
documents than code) were conducted and an average effort
of 0.8 hours was spent to find and fix a major problem. After
the second year, a total of 63 code inspections and 100
document inspections had been conducted and the average
effort to find and fix a major problem was 0.9 hours.

Bourgeois [4] reports experience from a large maintenance
program within Lockheed Martin Western Development
Labs (LMWDL) where software inspections replaced
structured walk-throughs in a number of projects. The
analyzed program is staffed by more than 75 engineers who
maintain and enhance over 2 million lines of code. The
average effort for 23 conducted software inspections (6
participants) was 1.3 staff-hours per defect found and 2.7
staff-hours per defect found and fixed. Bourgeois also
presents data from Jet Propulsion Laboratory which is used
as an industry standard. There, the average effort for 171
software inspections (5 participants) was 1.1 staff-hours per
defect found and 1.4 to 1.8 staff-hours per defect found and
fixed.

Franz and Shih’s data [12] indicate that the average effort
per defect for code inspections was 1 hour and for testing
was 6 hours.

In presenting the results of analyzing inspections data at JPL,
Kelly et al. [21] report that it takes up to 17 hours to fix
defects during formal testing, based on a project at JPL.
They also report approximately 1.75 hours to find and fix
defects during design inspections, and approximately 1.46
hours during code inspections.

3.3 Modelling the Uncertainty of Data
One advantage of using data from the literature is that it
represents a considerable number of project experiences with
defect detection phases. This wide range of experiences,
however, also introduces variation in the values relevant for
our benchmarks. This variability is due to a combination of
factors. We consider below the sources of this variability and
how to model it.

Potential Causes of Variability in Literature Data
Three classes of factors can cause this variability: inherent
variation, different implementations of defect detection
techniques, and data errors.

It is to be expected that any phenomenon involving social

systems will exhibit some natural variability. This is due to
the fact that all variation in such systems cannot be explained
through some causal mechanism [28].

Different implementations of inspections can be
characterized by:

1. Differences in the level of experience of the staff per-
forming defect detection.

2. Differences in the defect detection process that is fol-
lowed (e.g., inspections can be conducted with or without
collection meetings with different amounts of rigour),
differences in the number of participants in the inspec-
tions, differences in the number of inspection sessions,
and the existence of tool support [30].

3. The data from the literature comes from different appli-
cation contexts (e.g., different application domains).

4. Different types of artifacts of different levels of quality
go through defect detection in the literature reports (e.g.,
some design documents may be harder to read than oth-
ers).

In general, using data from the literature requires some
caution due to the possible introduction of data errors [17].
In the case of inspections, in addition to clerical errors, the
data errors can be characterized by:

1. Data from the literature may have different levels of pre-
cision due to different organizations exhibiting different
amounts of rigour in their data collection.

2. Defect detection in different phases need not be inde-
pendent from each other. For example, if earlier phases
detect many defects, the defect detection probability
might decrease in later phases because the remaining
defects may be harder to find than the average defect.
Therefore the effectiveness values obtained from the lit-
erature will sometimes include the effect of dependence
on the previous defect detection phase (which reduces
effectiveness), and sometimes not (if the defect detection
phase was the first in the life cycle).

3. Imprecision in the reporting of data in the literature. For
example, some papers report the average effort per
defect. However, it is not always clear whether these
refer to the effort to detect only or to detect and fix the
defect.

4. The unit of analysis of calculations reported in the litera-
ture also can vary. For example, in some reports, defect
detection effectiveness is calculated across all artifacts
for a project. In others, the effectiveness for each artifact
is calculated, then the overall effectiveness is computed
as the average over all effectiveness values.

It is important to capture this variability because it reflects
the uncertainty we have in the values that have been obtained
from the literature. This can be achieved by modeling each
of the variables as a distribution rather than a single value.
By employing distributions, we account for the uncertainty
introduced by using published data. Even within single
enterprises, it is expected that there will be variation due to

some of these factors.

Modelling Variation
In order to model a variable’s uncertainty, we chose to use
the triangular distribution defined by a minimum, most
likely, and maximum value triplet (see [9]). As discussed in
[33], when little is known about the shape of the actual
distributions, there is no compelling reason to use a
distribution more complex than a triangular one. Although
the triangular distribution gives more weight to the minima
and maxima when compared, for example, to a BetaPert
distribution (see Figure 4), the literature review provided us
with what is referred to as “practical” minima/maxima [33],
that is extreme but plausible situations. For prudence, we
also evaluated the robustness of our benchmarks to usage of
the BetaPert distribution. This is presented later.

In constructing distributions, not all the data available in the
literature was used and only information resulting from
precise data collection performed on actual defect detection
activities was considered (i.e., we did not consider
approximations or estimates, or data whose origins were
unclear).

We applied the following rationale to use the published data.
For data that comes from actual projects:

• the highest value is taken to be a potential maximum for
the triangular distribution

• the lowest value is taken to be a potential minimum

If there are multiple values provided for the same project
(e.g., different defect types), we took their average before
applying the above two rules. For data that comes from
many projects, we take the maximum and minimum of their
range. If these are larger/smaller than these from individual
projects above, then the multiple project maximum/
minimum become the values for the triangular distribution.
The average of all of the remaining project values was taken
as the most likely value.

Effectiveness of Design Inspections
The maximum value for the effectiveness of design
inspections is reported in [14] from IBM Rochester Labs.
This was 0.84 (average for two types of design document).
The minimal value was reported by Jones as 0.25 for

0.0

0.2

3.0 7.3 11.5 15.8 20.0 0.0

0.3

3.0 7.3 11.5 15.8 20.0

Figure 4: The shape of the prbability distribution for a tri-
angular and a BetaPert distributions having a minimum of

4.5, a most likley value of 6, and a maximum of 17.

informal design reviews [18]. The most likely value is the
mid-point of the data from [6] and the industry mean
reported in [18]. The final set of values are summarized in
Table 1.

Effectiveness of Code Inspections
For the minimum value, only the data from [12] is used
(0.19). The maximum value of 0.7 was obtained in [34]. For
the most likely value, the data from [16][6][14][18][27] was
used to produce an average. The final set of values are
summarized in Table 1.

Average Effort per Defect for Design Inspections
Ackerman et al. [2] provide the maximum value of 2.9 hours
on average per defect for different design documents on a
project. The same article also provides the minimum value
obtained from another project. The most likely value was the
average of another project in [2], and [23][21]. The final set
of values are summarized in Table 2.

Average Effort per Defect for Code Inspections
The maximum value for code inspections of 2.7 hours per
defect was reported in [4]. The minimal value was reported
in [2]. The most likely value was the mean of values reported
in [2][34][12][21]. The final set of values are summarized in
Table 2.

Average Effort per Defect for Testing
The maximum value of 17 was obtained from Kelly et al.
based on a project at JPL [21]. The minimum of 4.5 was
obtained from Ackerman et al. [2]. The most likely value
was the mean for projects reported in [12][34] The final set

of values are summarized in Table 2.

4 The Benchmarks and Their Robustness
At this point, we have an efficiency model and a probabliity
distribution function (PDF) for each of its input variables.
Since these PDFs are taken to be somewhat representative of

the current inspection practices in the software industry, we
can produce an efficiency distribution which should be itself
representative of industry performances. This is performed
through Monte-Carlo simulations.

With Monte Carlo simulation, we sample independently a
value from each input distribution, and then calculate the
efficiency value according to our model. This procedure is
repeated 2000 times, and we end up with a distribution of
efficiency. We use the @RISK tool [29] to perform the
simulations.

4.1 Simulation Results

Efficiency of Code Inspections
Figure 5 shows the simulation results for code inspection
efficiency, and Table 3 summarizes the parameters for that
distribution. As expected, it can be concluded that code
inspections have a positive impact on software development
cost. Compared to a defect detection life cycle of testing
alone, the introduction of code inspections would save on
average 39% of the defect detection costs.

Efficiency of Design Inspections
Figure 6 and Figure 7 show the probability density functions
and Table 3 summarizes the distribution parameters for
design inspections in two defect detection life cycles.

For the DT life cycle, it would be expected that design
inspections would save on average 44% of the defect
detection costs when compared to a testing only life cycle.
Design inspections would also save, on average, 37% of
costs when compared to a life cycle of code inspections and
testing.

Summary
The simulation results indicate that the introduction of
inspections to any existing defect detection life cycle during
development will rarely if ever not result in cost savings.
The maximum obtainable savings from introducing a single
inspection phase, according to our simulations, will rarely if
ever exceed 80%. We can calculate that, compared to a
testing only life cycle, having design and code inspections
results in savings, on average, of more than 60% of defect
detection costs. The maximum that can be gained with the
introduction of the two inspection types is approaximately
90% of the cost os using testing alone.

4.2 Setting up the Benchmarks
One common and easily understandable approach for
interpreting scores through benchmarking is to use
percentiles [25]. The results from the 2000 simulation runs
are used to produce the percentile values. We use 20%
intervals to get a 5-level benchmark. The values for these are
shown in Table 4 for our three life cycles. One advantage of
percentiles is that, since they use the same unit, they are
comparable for different defect detection life cycles.

The interpretation of the values in Table 4 is relatively easy.
For example, the 60% value indicates that 60% of the
organizations will have larger inspection efficiency values

Defect detection
technique Minimum value

Most likely
value

Maximum
value

Design Inspections 0.25 0.57 0.84

Code inspections 0.19 0.57 0.70

Table 1: Probability distribution parameters for the effec-
tiveness of different defect detection techniques

Defect detection
technique

Minimum value
Most likely

value
Maximum

value

Design inspections 0.58 1.58 2.9

Code inspections 0.67 1.46 2.7

Testing 4.5 6 17

Table 2: Probability distribution parameters for the average
effort using different defect detection techniques

than 0.37 for the CT life cycle. This is equivalent to a level 3
on our benchmark. Therefore, if you have an efficiency
value x such that , then you are at level 3 on
the benchmark. The benchmark is constructed such that
higher levels are better (i.e., lower percentage of
organizations will have greater efficiency values). The
lowest level, level 1, is reserved for situations where
efficiency is less than 80% of other inspections.

Being based on percentiles, the benchmark scale is strictly
ordinal. We chose 5 levels to provide a reasonable amount of
discriminatory power, but also to emphasize that this is an
approximate benchmark (i.e., more than 5 levels would
imply more precision than is warranted).

4.3 Robustness of the Benchmarks

General Approach
In developing our benchmarks we have made a number of
assumptions. It is then prudent to evaluate the impact
violations of these assumptions would have on the
benchmarks. We consider two assumptions: the
appropriateness of the triangular distribution to model the
input variables, and the representativeness of the values from
the literature.

For each assumption, we consider its violation(s). For each
violation, we construct a new benchmark (referred to as the
violation benchmark). There will be differences in the level
classifications made by the violation benchmarks and the
benchmarks in Table 4. If the violation is more concordant
with reality, then we consider that the level assigned with the
violation benchmark as the more correct one. Consequently,

a difference between the level classification using a violation
benchmark and the equivalent benchmark in Table 4
represents an error in the benchmark of Table 4. We then
evaluate robustness by the percentage correct classifications.
The higher this percentage, the more robust the benchmark
of Table 4 to the violation...

To operationalize this procedure, we simulate 2000
inspections using each violation benchmark and compare the

Life cycle
Minimum

value
Median
value

Mean value
Maximum

value

CT 0.13 0.40 0.39 0.64

DT 0.16 0.44 0.44 0.75

DCT 0 0.37 0.37 0.71

Table 3: Statistical parameters of probability distribution
functions for inspection efficiency

Percentile CT DT DCT

5 (20%) > 0.48 > 0.53 > 0.46

4 (40%) > 0.43 > 0.47 > 0.39

3 (60%) > 0.37 > 0.41 > 0.33

2 (80%) > 0.31 > 0.35 > 0.27

1 --- <= 0.31 <= 0.35 <= 0.27

Table 4: Inspection efficiency benchmarks for the three de-
fect detection life cycles.

0.37 x 0.43≤<
 Distribution for CT

P
robability

 Efficiency

0.000

0.034

0.068

0.102

0.136

0.170

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Figure 5: Simulation results for the CT life cycle.

 Distribution for DT
P

robability

 Efficiency

0.000

0.034

0.068

0.102

0.136

0.170

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Figure 6: Simulation results for the DT life cycle.

 Distribution for DCT

P
robability

Efficiency

0.000

0.034

0.068

0.102

0.136

0.170

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Figure 7: Simulation results for the DCT life cycle.

violation level classification with that in Table 4. The
percentage of correct classifications is calculated across
these 2000 runs.

This percentage correct value gives the reader an indication
of how tolerant our benchmarks are to increasing levels of
violation of their assumptions. However, it is also necessary
at some point to make a decision as to whether the
benchmarks are sufficiently robust to be used. This then
raises the issue of how high does the percentage have to be
for it to be good enough.

While, for example, in statistics there are generally agreed-to
threshold values for accepting or rejecting a null hypothesis,
there are no equivalent threshold precedents in software
engineering for benchmarks. Therefore, we can take as a
guideline an accepted threshold from the arena of cost
estimation: that 75% of the predicted values should be within
25% of their actual observations [7]. To interpret this in our
context, we consider our benchmark to be robust if 75% of
its classifications are within 1 level of the classification
given by the new (violation) benchmark.

Using the above criterion to evaluate the robustness results
of our benchmarks results in obtaining 100% of all
classifications of our benchmarks within 1 level of the
classification given by the violation benchmarks. Hence, it is
a lax criterion to apply because it does not give an indication
of how performance deteriorates as the violations become
more extreme. We therefore consider 75% of classifications
of our benchmarks that are at the same level of classification
given by the violation benchmark as an acceptable threshold.

Robustness to Shape of Distribution
To evaluate the robustness of our benchmarks to the shape of
the distribution, we evaluate the extent to which benchmark
levels would be different had we used BetaPert distributions.

We found that we obtain 75% similar classifications for the
CT life cycle, 91% for the DT life cycle, and 66% for the
DCT life cycle. Therefore, it would seem that the DCT
benchmark is sensitive to the shape of the distribution that is
used, but the CT and DT life cycles are robust according to
our criterion.

Robustness to Under-Representation of Low Performers
It can be argued that only organizations that have
implemented inspections with reasonably encouraging result
have publicized them. In addition, they would be the ones
who are likely to have actually collected sufficient data to
report. Therefore, it is plausible that projects at the low end
of the inspection effectiveness scale are under-represented in
the literature and hence are under-represented in our
benchmark. Similarly, those projects at the high end of the
inspections cost scale would be under-represented. The
ensuing implication then is that the benchmark is too
stringent since it is composed largely of successful
implementations, which is not representative of the current
industry-wide status.

It is informative then to evaluate the robustness of the
benchmark if the above situation was true. The approach we
use follows the logic of the previous robustness evaluation.
Assuming that the published data under-represents low
performers, then we construct new distributions with
incrementally decreasing performance that may be more
representative. We did this separately for the three defect
detection life cycles. We incrementally reduced the
effectiveness of design and cost inspections until just above
zero, and incrementally increased the costs of design and

Design Effectiveness
Code Effectiveness
Design Cost
Code Cost

Robustness of DCT Life Cycle

Percentage Deviation

P
er

ce
nt

ag
e

C
or

re
ct

45

55

65

75

85

95

105

-40
-35

-30
-25

-20
-15

-10
-5

+5
+10

+15
+20

+25
+30

+35
+40

+45
+50

Figure 8: Sensitivity of the DCT life cycle.

Design Effectiveness
Design Cost

Robustness of DT Life Cycle

Percentage Deviation

P
er

ce
nt

 C
or

re
ct

40

50

60

70

80

90

100

110

-40
-35

-30
-25

-20
-15

-10
-5

+5
+10

+15
+20

+25
+30

+35
+40

+45
+50

Figure 9: Sensitivity of the DT life cycle.

Robustness of CT Life Cycle

Percentage Deviation

P
er

ce
nt

 C
or

re
ct

50

60

70

80

90

100

-35 -30 -25 -20 -15 -10 -5 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50

Code Effectiveness
Code Cost

Figure 10: Sensitivity of the CT life cycle.

code inspections for 10 increments, with each increment at
5% of the total range.

We start by presenting the results for the DCT life cycle
since it is the most general. These are shown in Figure 8. The
benchmark is not sensitive to reductions in the effectiveness
of code inspections (since the percent similar classifications
is above 75% down to an effectiveness of zero). As long as
design inspection effectiveness is not in violation by more
than 15%, then the percent similar classifications remains
above 75%). It is not sensitive to the cost of code inspections
increasing by up to 50%. Also, as long as the cost of design
inspections is not in violation by more than 40%, then the
percent similar classifications remains above 75%.

For the DT life cycle (see Figure 9), the percent similar
classifications are above 75% if design effectiveness is not in
violation by more than 15%, and if the cost of design
inspections is not in violation by more than 40%. For the CT
life cycle (see Figure 10), the percent similar is above 75% if
the effectiveness of code inspections is not in violation by
more than 15%, and if the cost of code inspections is not in
violation by more than 50%.

In general then, as long as the effectiveness measures of
potentially under-represented low-performing projects does
not reduce the minima of our distributions by more than
15%, and their cost measures do not increase our maxima by
40%, then we can consider our benchmarks to be robust.

We contend that the literature would have to be quite biased
against low-performing projects for violations as extreme as
those above to be plausible. However, this remains an open
question, and the plausibility of such violations can only be
demonstrated by future empirical examples.

4.4 Improving the Benchmarks
While we have presented the method for constructing an
efficiency benchmark, there remain a number of
opportunities for improving the benchmark. Improving the
benchmark means reducing the variability of the efficiency
distribution.

The variability in the efficiency distribution is due to the
variability of the input parameters. The reasons for this
variability have been discussed earlier. It is then obvious that
reducing the variability of input parameters would lead to
reducing the variability of the efficiency distribution.

To reduce variability in the input parameters, one ought to
collect more precise input data that give a more accurate
representation of the past experiences that you want to base
the benchmark on. For instance, one can develop
distributions using data exclusively from similar projects
(i.e., within the same organization in the same application
domain). Also, improvement in the consistency of data
collection and reporting could increase the precision of the

 and distributions.

It may be difficult to collect more accurate and more relevant
data for all of the input variables. The question then

becomes: what input variable uncertainty should in priority
be reduced to lower significantly the overall uncertainty of
the benchmark?

To identify those input variables of the efficiency model that
have the greatest impact on the uncertainty of the simulation
outcome, we can consider the amount of variation in
efficiency that is explained by each of the input variables.
This form of sensitivity analysis can use bivariate correlation
coefficients [33]. This can be defined intuitively as a way of
computing the association between an input variable values
and the simulation outcome values during the Monte-Carlo
process. It can therefore be used to determine which input
variable seems to influence most the efficiency during
simulation.

We use both the Pearson product moment correlation and
Spearman’s rank order correlation, and obtained similar
results. We therefore present the results only for the former
in Table 5.

These results indicate that, for each defect detection life
cycle, the input variable that has the biggest impact on
efficiency variation is the effectiveness of the defect
detection phase under evaluation. For example, for the CT
life cycle, the variable with the greatest correlation is the
effectiveness of code inspections. Similarly, for the DT life
cycle, it is the effectiveness of design inspections. In second
position, with a more moderate correlation, is the effort per
defect. For the DCT life cycle, the variables with the greatest
influence are the effectiveness of design inspections and the
effort per defect for design inspections.

To improve the benchmarks, the most important action
would be to collect more precise data on the effectiveness of
inspections. For industry-wide benchmarks, this would
necessitate greater detail and consistency in the reporting of
values in the literature. For enterprise-wide benchmarks, the

ε̂f p̂f

CT
Efficiency

DT
Efficiency

DCT
Efficiency

Effectiveness of
Design Inspec-

tions

-- 0.89 0.71

Effectiveness of
Code Inspections

0.91 -- -0.22

Effort per Defect
for Design
Inspections

-- -0.29 -0.46

Effort per Defect
for Code Inspec-

tions

-0.25 -- 0.008

Effort per Defect
for Testing

0.27 0.29 0.38

Table 5: Sensitivity analysis results.

literature-derived cost values we present here can still be
used, but the organization ought to focus on the collection of
better effectiveness measures to obtain substantially more
precise benchmarks.

5 Summary and Conclusions
We have constructed three efficiency benchmarks for design
and code inspections based on most of the publicly available
industry data. We have evaluated the robustness of these
benchmarks to assumptions made during their construction,
and found them to be robust. Although far from being fully
satisfactory, these benchmarks can be used as a comparison
baseline by companies using and especially introducing
formal inspections. Such benchmarks should help them
determine whether their inspection processes have a
satisfactory efficiency level or whether corrective actions are
needed.

The benchmark construction procedure presented in this
paper can be used to guide organizations in building their
own enterprise-wide benchmarks, which would in turn help
them conduct internal comparisons of inspection processes.

Also, as a lesson learned, many of the data reported in the
literature were not presented in a manner that would allow
straightforward comparison and analysis. If, as a
community, we are to make progress regarding the modeling
of inspection efficiency, we need to be able to reuse
published data, perform comparisons across organizations,
and attempt some degree of meta-analysis. For that purpose,
efficiency models need to be clearly defined, along with
their underlying assumptions, and the raw data need to be
presented at a level of granularity allowing their use for
meta-analysis purposes.

REFERENCES
[1] M. Allen and W. Yen: Introduction to Measurement Theory.

Brooks/Cole Publishing Company, 1979.

[2] A. Ackerman, L. Buchwald, and F. Lewski: “Software Inspec-
tions: An Effective Verification Process”. IEEE Software,
6(3):31–36, May 1989.

[3] B. Boehm: Software Engineering Economics. Prentice-Hall,
1981.

[4] K. Bourgeois: “Process Insights from a Large-Scale Software
Inspections Data Analysis.” In Cross Talk, The Journal of
Defense Software Engineering, 9(10):17–23, October 1996.

[5] J. Barnard and A. Price: “Managing Code Inspection Informa-
tion”. IEEE Software, 11(2):59–69, March 1994.

[6] J. Collofello and S. Woodfield: “Evaluating the Effectiveness
of Reliability-Assurance Techniques”. Journal of Systems and
Software, 9(3):191–195, 1989.

[7] S. Conte, H. Dunsmore, and V. Shen: Software Engineering
Metrics and Models. Benjamin Cummings, 1986.

[8] E. Doolan: “Experience with Fagan’s Inspection Method”. In
Software - Practice and Experience, 22(2):173-182, February
1992.

[9] M. Evans, N. Hastings, and B. Peacock: Statistical Distribu-
tions. John Wiley & Sons, Inc., 1993.

[10]M. Fagan: “Design and Code Inspections to Reduce Errors in

Program Development”. In IBM Systems Journal, 15(3):182–
211, 1976.

[11]M. Fagan: “Advances in Software Inspections”. In IEEE Trans-
actions on Software Engineering, 12(7):744–751, July 1986.

[12]L. Franz and J. Shih: “Estimating the Value of Inspections and
Early Testing for Software Projects”. In Hewlett-Packard Jour-
nal, pages 60-67, December 1994.

[13]D, Freedman and G. Weinberg: Handbook of Walkthroughs,
Inspections, and Technical Reviews. Dorset House, 1990.

[14]T. Gilb and D. Graham. Software Inspection. Addison-Wesley
Publishing Company, Wokingham, England, 1993.

[15]R. Grady. Practical Software Metrics for Project Management
and Process Improvement. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1992.

[16]R. Grady and T. Van Slack: “Key Lessons In Achieving Wide-
spread Inspection Use”. In IEEE Software, 11(4):46–57, July
1994.

[17]H. Jacob: Using Published Data: Errors and Remedies. Sage
Publications, 1984.

[18]C. Jones: “Software Defect Removal Efficiency”. In IEEE
Computer, 29(4):94-95, April 1996.

[19]C. Jones: Applied Software Measurement, McGraw-Hill, 1991.

[20]S. Kan: Metrics and Models in Software Quality Engineering.
Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1995.

[21]J. Kelly, J. Sherif, and J. Hops: “An Analysis of Defect Densi-
ties found During Software Inspections”. In Proceedings of the
Fifteenth Annual Software Engineering Workshop, Goddard
Space Flight Center, 1990.

[22]B. Kitchenham, L. Pickard, and S-L Pfleeger: “Case Studies for
Method and Tool Evaluation”. In IEEE Software, pages 52-62,
July 1995.

[23]B. Kitchenham, A. Kitchenham, and J. Fellows: “The Effects
of Inspections on Software Quality and Productivity”. In ICL
Technical Journal, 5(1):112–122, May 1986.

[24]S. Kusumoto. Quantitative Evaluation of Software Reviews and
Testing Processes. PhD. Dissertation, Osaka University, Sep-
tember 1993.

[25]H. Lyman: Test Scores and What They Mean. Prentice-Hall,
1963.

[26]T. McGibbon: “A Business Case for Software Process
Improvement”. A DACS State-of-the-Art Report, September
1996. URL: http://www.dacs.com/techs/roi.soar/soar.html.

[27]G. Meyer: “A Controlled Experiment in Program Testing and
Code Walkthroughs/Inspections”. In Communications of the
ACM, 21(9):760-768, September 1978.

[28]M. Morgan and M. Henrion: Uncertainty: A Guide to Dealing
with Uncertainty in Quantitative Risk and Policy Analysis.
Cambridge University Press, 1990.

[29]Palisade Corporation, Newfield, NY. Guide to Using @RISK,
September 1996.

[30]A. Porter, H. Siy, and L. Votta: A Review of Software Inspec-
tions. Technical Report CS-TR-3552, Institute for Advanced
Computer Studies, Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742, October 1995.

[31]H. Remus: “Integrated Software Validation in the View of
Inspections/Reviews”. In Proceedings of the Symposium on

Software Validation, H. L. Hausen (ed.), Elsevier Science Pub-
lishers, pages 57-64, 1984.

[32]G. Shirey: “How Inspections Fail”. In Proceedings of the Ninth
International Conference on Testing Computer Software, pages
151–159, 1992.

[33]D. Vose. Quantitative Risk Analysis: A Guide to Monte Carlo
Simulation Modelling. John Wiley & Sons Ltd, Chicester, Eng-
land, 1996.

[34]E. Weller: “Lessons from Three Years of Inspection Data”. In
IEEE Software, 10(5):38–45, September 1993.

