
ABSTRACT1

In this paper we characterize and model the cost of rework in
a Component Factory (CF) organization. A CF is responsible
for developing and packaging reusable software
components. Data was collected on corrective maintenance
activities for the Generalized Support Software reuse asset
library located at the Flight Dynamics Division of NASA’s
GSFC. We then constructed a predictive model of the cost of
rework using the C4.5 system for generating a logical
classification model. The predictor variables for the model
are measures of internal software product attributes. The
model demonstrates good prediction accuracy, and can be
used by managers to allocate resources for corrective
maintenance activities. Furthermore, we used the model to
generate proscriptive coding guidelines to improve
programming practices so that the cost of rework can be
reduced in the future. The general approach we have used is
applicable to other environments.
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INTRODUCTION
Previous research has shown that software reuse has a great
potential to improve software development productivity and
product quality [6][25][19]. For example, effective reuse of
knowledge, processes and products from previous
experience can decrease software development cost, reduce
project delivery time and improve software quality [5][13]. 

However, reuse will not just happen—rather, components
must be designed for reuse, and organizational elements
must be created to enable projects to take advantage of the
reusable software artifacts [2][11][26].

To facilitate the packaging and reuse of software
development experience, an infrastructure called the
Component Factory (CF) has been proposed [4]. The CF is a
separate entity from the organization that produces

1.This paper appears as International Software Engi-
neering Research Network technical report
ISERN-97-07.

applications. The CF is responsible for developing and
packaging reusable software components. It creates and
maintains a software component repository for future reuse
and supplies reusable components to the development
organization upon demand. 

Several studies have empirically examined the
characteristics of reusable components. For example, [22]
investigated new versus reused code in a large collection of
FORTRAN projects to analyze the pros and cons of creating
a component from scratch versus modifying an existing
component. Also in [25], eight medium scale Ada projects
were assessed with respect to the defects found in newly
developed and reused components. However, none of these
works were concerned with software components that were
developed exclusively for reuse. As far as we know, studies
of reuse have focused on the side of the project organization,
which reuses the components, rather than on the side of the
CF, which creates the components. The primary reason for
this different focus appears to be that not many software
companies have a CF set up to develop and maintain
reusable software components. Another potential
explanation is that the few existing CFs have not collected
sufficient data allowing them to evaluate the different
aspects of the development and maintenance of reusable
components.

In this paper we present a study that characterizes and
models the cost of rework for a library of reusable
components. This library, known as the Generalized Support
Software (GSS)  reuse asset library, is located at the Flight
Dynamics Division (FDD) of NASA’s Goddard Space Flight
Center (GSFC). Component development began in 1993.
Subsequent efforts focused on generating new components
to populate the library and on implementing specification
changes to satisfy mission requirements. The first
application using this library was developed in early 1995. 

The asset library currently consists of 921 Ada83
components totaling approximately 515 KSLOC. Based on a
review of the first 58 GSS error correction reports, 102 of
these 921 components have required error correction one or
more times.  We first characterize the 58 error correction
reports in terms of source of error, class of error (both
defined below), effort required to isolate the error, and effort
required to correct the error. We then use a machine learning
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algorithm, C4.5 [21], to construct a model for approximate
prediction of the cost of rework ("high" or "low"), using
internal source code metrics of the components that are
changed. The prediction model can help managers of the
GSS asset library in the decision-making process by
providing them with guidelines for predicting where
corrective maintenance resources will most be needed. The
model also consists of a set of easily interpretable coding
guidelines that can be applied in improving current practices
in order to reduce the cost of future rework. We expect that
the process used to model rework in the GSS environment
can be used in other environments to provide equally
effective prediction models and coding guidelines that are
appropriate for those environments.  

In [16], various modeling techniques were used to predict
maintenance productivity. In that article, the only product
metric that was considered was a software size measure
based on LOC. In [8], a machine learning algorithm was also
used to predict the cost of rework in an Ada environment
using internal product metrics. Unlike the components we
have studied, however, the components analyzed in [8] were
developed to satisfy specific application requirements. The
current paper is, to our knowledge, the first that applies
machine learning techniques to help manage the
maintenance of reusable components, and to improve the
way these components are produced in order to reduce
maintenance costs within a CF. 

The paper is organized as follows. It first presents the
framework in which this study was conducted: the FDD, the
Software Engineering Laboratory (SEL), and the GSS
domain engineering and application deployment processes.
The paper then presents the method for data collection and
analysis. Then, the results of our analysis, including
descriptive statistics that characterize the components and a
predictive model of rework effort, are presented. We
conclude the paper with a summary and directions for future
work.

ENVIRONMENT OF THE STUDY

The FDD
GSFC manages and controls NASA’s Earth-orbiting
scientific satellites and also supports human space flight. For
fulfilling flight dynamics responsibilities for both of these
complex missions, the FDD developed and now maintains
over 100 different software systems, ranging in size from 10
thousand source lines of code (KSLOC) to 300 KSLOC, and
totaling approximately 4.5 million SLOC. This software
covers three separate subdomains of the FDD mission:
mission planning, orbit determination, and attitude1

determination.

To increase the amount and type of reuse, and at the same
time to drastically reduce the cycle time needed to develop
and test new software systems, the FDD embarked on the
GSS Domain Engineering Process in 1993. This process
achieves rapid deployment by utilizing an object-oriented
architecture in which the reusable assets are the generalized

1. The term "attitude" refers to a spacecraft’s orientation in space.

specifications for the reusable software components, as well
as the reusable software components themselves (written in
Ada83). Adopting this architecture and process results in a
paradigm shift from developing software applications to
configuring software applications. The GSS  reuse asset
library is the software component repository examined in
this paper. 

The SEL
The Software Engineering Laboratory began in 1976 with
the goals of understanding the software process and product
in the FDD, determining the impact of available
technologies, and infusing the identified/refined methods,
techniques, and products back into the environment. The
approach has been to identify technologies with potential,
apply them, and study their effect, based on studying the
impact of the changes on such issues as cost, reliability, and
quality. The participating organizations are the FDD, the
University of Maryland, and Computer Sciences
Corporation.

Over the years, the SEL has investigated numerous
techniques and methods in over a hundred projects to
understand and improve the software development process
and product in their environment [20].  The result of this
legacy is an organization and personnel that are quite
interested in experimentation with new technologies and not
averse to change.  They are also a part of an environment
that is quite successful at the type of work in which they are
involved.

The approaches used for learning include the concept of the
Experience Factory (EF). The focus of the EF in the SEL is
on collecting metrics and lessons learned from standard
projects and from special experiments, and then analyzing
these data and packaging them into guide books, models, and
training courses that can be spread to all areas of the
development organization. The EF is different from the
Project Organization (PO) which focuses on the
development and maintenance of applications. Their
relationship is depicted in Figure 1. The SEL EF has
developed and packaged:

• resource models and baselines (e.g., local cost models,
resource allocation models)

• change and defect baselines and models (e.g., defect pre-
diction models, types of defects expected for the applica-
tion)

• project models and baselines (e.g., actual vs. expected
product size)

• process definitions and models (e.g., process models for
Cleanroom, Ada waterfall model)

• method and technique evaluations (e.g., best method for
finding interface faults)

• products and product parts (e.g., Ada generics for simula-
tion of satellite orbits)

• quality models (e.g., reliability models, defect slippage
models, ease of change models), and 

• lessons learned (e.g., risks associated with an Ada devel-
opment). 



Figure 1: The relationship between the Experience Factory 
and the Project Organization.

.

Figure 2: The relationship between the Component Factory 
and the Project Organization.

These models are built to understand the local environment,
identify areas for improvement, attempt improvement via
change, and form bases for evaluating that change against
goals.

The Component Factory (CF) organization is a sub-
organizational structure of the EF—an addition to the
traditional EF. The CF focuses on generating a configuration
architecture and reusable components, based on learning
over time. This learning is in the form of analysis and
synthesis of what is most effective for reuse (as well as what
is expected to be needed for configuring applications) for the
future development of products in a certain class. To staff a
CF, some members of the PO functionally become members
of the CF, although they may continue to think of themselves
still as PO members. (See Figure 2.)  That is, some mission
analysts and application developers become domain analysts
for the CF, and some application developers become
component engineers for the CF.  The domain analysts
design the architecture and class specifications of the reuse
asset library.  The component engineers then construct the
reusable class components. The PO takes advantage of this

architecture and asset library to configure new systems. The
PO's mission analysts now compare mission requirements to
the asset library's functional specifications and produce a
mission specification document that tells the PO's
application configurers—application developers are no
longer needed—how to configure the desired system from
the reuse library assets.  The traditional elements of the EF,
together with the CF staff, then study how effective this
process and the asset library have been for future
improvement

.

Figure 3: The GSS domain engineering and
application deployment process.

The GSS Process
The activites of the CF and the PO in the GSS domain
engineering and application deployment process are shown
in more detail in Figure 3.  The process relies on five
functionally distinct teams, although some personnel may
overlap between teams (particularly between the component
engineers and the application configurers). The domain
analysts write the class and category specifications. The
component engineers code the classes and categories that,
together with the specifications, make up the GSS reuse
asset library. The mission analysts analyze the mission
requirements and specify which classes need to be used for a
given mission and how they should be configured. The
application configurers configure the desired mission
applications from the available classes and categories in the
GSS reuse asset library, instantiate the generics, and perform
integration testing of the application. The application testers
conduct acceptance testing of the configured mission
application.  

DATA COLLECTION AND ANALYSIS METHOD

Definitions
Errors are defects in the human thought process that are
made while trying to understand and communicate given
information, solve problems, or use methods and tools.
Faults are concrete manifestations of errors within the
software.

In this study, an error is represented by a single software
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Change Request Form (CRF) [15] filled by developers and
configurers to institute and document a change to one or
more components. A CRF results in modifications to one or
more components in the reuse asset library. CRFs are also
generated for enhancements, requirements changes, and
adaptation. The current paper examines only error correction
CRFs.

A fault pertains to a single component and is evidenced by
the physical change of that component in response to a
particular error CRF. In this study, we define a component as
as an Ada file in configuration management. A faulty
component version becomes a fixed component version after
it is corrected. We are only interested in the faulty
component versions.

Data Collection
We collected data on: (1) error identification and error
correction (which follow initiation of a CRF), including the
names and version numbers of the source code components
that had faults in them, and (2) source code metrics
characterizing these particular components. 

Between 9th March 1994 and 21st September 1995, a total
of 58 GSS error correction CRFs were generated, meaning
58 errors were identified. (In addition, 96 additional GSS
CRFs were generated for requested enhancements,
adaptations, and requirements changes.) Most of the GSS
error correction CRFs were initiated by configurers, who
uncovered problems during instantiation of the Ada generics
and integration testing of the configured application, prior to
turning over the configured application to acceptance
testing.  A very small minority of the CRFs—perhaps ten
percent—were initiated by a maintainer of the reuse asset
library following the report of a failed application test item
by the independent tester group during conductance of
acceptance testing of the application..

The CRF data analyzed by our study consisted of (1) the
classification of errors by source and class, (2) the names of
components changed to correct the errors, (3) the effort
expended to isolate all faults associated with the error, and
(4) the effort required to correct all of these faults. Each of
these is described below.

Isolation and correction effort was measured on a 4-point
ordinal scale: 1 hour, from 1 hour to 1 day, from 1 to 3 days,
and more than 3 days. In addition, the maintainer provides
the source of the error (requirements, functional
specification, design, code, or previous change). Once an
error is found during configuration and testing, the
maintainer finds the cause of the error, locates where the
modifications are to be made, and determines that all effects
of the change are accounted for. Then the maintainer
modifies the design (if necessary), code, and documentation
to correct the error. Once the maintainer fixes the error, the
maintainer provides the names of the components changed
(in our case the faulty components). The maintainer also
specifies the class of the error (initialization, internal/
external interface, user interface, database, algorithm, etc.).

The Amadeus tool [1] was used to extract source code
metrics from all faulty component versions. A description of

the source code metrics that were found useful is given in the
results section of this paper. If after the extraction of some
metrics it was found that they had zero variation (e.g., the
number of Goto’s), we excluded these metrics from further
analysis.

Data Analysis: Characterization
The first data analysis task was to characterize or describe
the errors. The objective of this characterization is to
understand better the nature of the errors and how they are
distributed. For this, basic pie charts were used.
Furthermore, basic bivariate analysis using contingency
tables and chi-square tests [24] was conducted to identify if
there were any  relationships between the source and class of
errors and the rework effort.

Since the contingency tables tended to be sparse in some
instances (i.e., cell frequencies approaching zero), we
dichotomized each of the isolation and correction cost
variables. We therefore considered isolation or correction
effort of 1 hour as Low, and effort greater than 1 hour to be
High.

Data Analysis: Modeling
A cost of rework model should allow: (1) the prediction of
which components are likely to be associated with costly
rework, and (2) provide programming guidelines that can be
used to prevent costly rework in the future. The cost of
rework is measured as the total effort taken to isolate and
correct an error.

Unit of Analysis
The unit of analysis for developing the model is a faulty
component version. During rework, a total of 118 changes
were made to 102 components to fix these 58 errors. Four of
the components were changed three times (i.e., on three
different CRFs), 8 components were changed twice, and the
remaining 90 were changed only once.

Approximately 75% of the components in the library are
generated using a code generator. When software changes
are necessary, maintainers do not make changes directly to
the outputs of the code generator. Instead, the inputs to the
code generator are changed, and new versions of the output
components are generated. Given that rework effort is only
directly affected by the characteristics of the component
versions that are actually changed by the maintainers,
component versions that are automatically regenerated by
the code generator should not be included in our analysis.
Where the components associated with a CRF include the
input to the code generator as well as the output component,
we excluded the modified output versions in our analysis.
This leaves a total of 76 faulty component versions which
are the basis of our analysis. 

Model Specification
The model that we developed identifies component versions
that are associated with costly rework rather than trying to
predict the exact effort for reworking a component version.
We therefore use the characteristics of a faulty component
version as input into the model, and the total rework effort
for the error as the output of the model. Given that the model
we developed is a classification model, it classifies a



component version into ones of two rework cost categories:
Low Cost  and High Cost. (Note that these categories are
different from the one described in the “Characterization”
paragraph above because, for the model we are interested in
total rework effort, while in characterization we look at
isolation and correction separately.) This allows the model to
predict whether a component version is associated with a
costly, or otherwise, error.

Modeling Technique
The modeling technique that we used is a machine learning
algorithm called C4.5 [21]. The C4.5 algorithm partitions
continuous attributes, in our case the internal product
metrics, finding the best threshold among the set of training
cases to classify them on the dependent variable. As well as
being useful for prediction, the generated tree provides
decision rules characterizing component versions that fall
into each one of the two rework cost categories.

We chose this technique because the models are
straightforward to build and are also easy to interpret. In
addition, this class of modeling techniques has been used in
the software engineering literature to build prediction
models [23], and therefore there already is some familiarity
with it. Of course, other classification techniques, e.g.,
Optimized Set Reduction [9] or logistic regression [6], could
have been used. However, our goal here is not to compare
classification techniques.

Potential Application of the Model
A prediction identifying component versions that are going
to be associated with costly errors can help managers
allocate resources for the maintenance activities. The
availability of rules as part of the model can help prevent
high rework cost in the maintenance environment. For
example, rules that characterize high rework cost can be
treated as proscriptive programming guidelines for
developing future components. It is on proscriptive rules that
we focus in this study.

It should be noted, however, that the model does not identify
which component versions in the asset library are likely to
have faults, only which of the faulty versions should be more
or less expensive to isolate and correct. Application of such
predictions assumes that the manager knows beforehand
which components are likely to contain a fault. Models for
the prediction of fault-prone Ada components in the SEL
environment have been developed in the past [9]. Once a
component version has been identified as potentially fault-
prone, then it is possible to predict the cost of rework
category when fixing an error that leads to faults in that
version. Using this additional information, a manager can
improve the resource allocation for maintenance.

Dependent Variable
To build a classification model, we dichotomize our
dependent variable, which is the total cost of rework. We
converted the four effort categories into average values
following [3]. We assumed an 8 hour day, and took the
average value for each of the categories of rework.
Therefore, the category of “1 Hour” was changed to 0.5
hours, the category of “1 hour to 1 Day” was changed to 4.5

hours, the category of “from 1 to 3 Days” was changed to 16
hours, and the category of “more than 3 Days” was changed
to 32 hours. We then summed up these values for isolation
and correction costs. This gives us an average overall rework
cost. The median of total rework cost per CRF was 5 hours,
and we used that as the cutoff point for dichotomization.
Based on this dichomotomization, we have 33 component
versions that were associated with errors requiring a low cost
of rework and 43 that required a high cost of rework.

Independent Variables
Internal product metrics have been widely used to predict
quality attributes such as productivity and software quality
[14]. Here, we are interested in studying the use of internal
product metrics of the faulty GSS component versions to
predict the cost of rework. Previous research investigated the
use of the characteristics of the change as the basis for the
prediction of correction effort [10], however, the
characteristics of the change are usually not available before
the change is actually made (or at least not before isolation
of the error). We only wanted to use information that would
be available before isolation in order to develop a model for
predicting total rework effort.

Evaluation of the Model
To evaluate the model, we need criteria for evaluating the
overall model accuracy and for evaluating the strength of the
rules. Evaluating model accuracy tells us how good the
model is expected to be as a predictor. Evaluating the
strength of the rules tells us the extent to which we can trust
these rules as programming guidelines.

Evaluating Prediction Accuracy
Three criteria for evaluating the accuracy of predictions are
the predictive validity criterion, and measures of correctness
and completeness. These are defined below with reference to
Table 1. Table 1 shows symbols for frequencies.

A criterion of prediction validity has been presented in [17].
This basically involves laying out the frequencies as in Table
1, and calculating the chi-square statistic. If the value is
larger than a critical value then it is claimed that the model
has predictive validity. The authors state that a model that
does not meet the criterion of predictive validity should be
rejected. This does not necessarily mean that a model that
meets the predictive validity criteria should be accepted (it
would be easy to demonstrate that if the classification model
predicted all High Cost components as Low Cost and vice
versa - i.e., very high misclassification - it would still have
high predictive validity). We use this criterion to determine
whether there is any association between the predicted
rework cost of a component and its real rework cost.



Correctness is defined as the percentage of component
versions that were predicted to be costly to rework and were
actually costly to rework. We want to maximize correctness
because if correctness is low, then the model is identifying
more component versions as being costly to rework when
they really are not costly to rework, which could lead to an
over-allocation of resources to making changes (i.e.,
wastage).

Completeness is defined as the percentage of those
component versions costly to rework and were predicted to
be costly to rework. We want to maximize completeness
because as completeness decreases, more versions that were
costly to rework are mis-identified as not costly to rework,
which would lead to a shortage of resources for making
changes..

In order to calculate values for correctness and
completeness, we used a V-fold cross-validation procedure
[7]. For each observation X in the sample, a model was
developed based on the remaining observations (sample -
X). This model was then used to predict whether observation
X will have high rework or low rework. This validation
procedure is commonly used when data sets are small. 

Evaluation of Rules
The generated model from all 76 versions is also useful for
providing proscriptive guidelines to programmers. The
guidelines inform the programmers of the characteristics of
faulty components that tend to require costly rework. By
producing components that do not have these characteristics,
there is a greater chance that components will be produced
that are not costly to rework. There are two ways for
evaluating such rules. First by measuring the number of
cases that a rule classified correctly. Second, by appeal to the
intuition of programmers in the environment (i.e., do the
rules make sense to them).

RESULTS

Characterizing Errors

Distribution of Errors by Error Source
Figure 4 shows the overall distribution of errors (the 58
errors) by error source. Requirements and functional
specification errors are those triggered by a
misunderstanding of user requirements, and are introduced
into the system by the process of transforming user
requirements into project requirement specifications. Design
errors are those introduced in the process of transforming
requirements and specifications into detailed (component-
level) design. Coding errors are those that occur when
transforming the detailed design to code, such as  mistyping
a variable name, incorrectly coding an assignment statement,
or incorrectly coding the exit criteria of a loop. Finally,
errors resulting from a previous change are those that were
not in the system until some other change was implemented
(in which case the implementation of the previous change
did not consider all of its possible effects, or the change was
simply implemented incorrectly).

Figure 4: Distribution of errors by source.

Predicted Rework Cost

Low Cost High Cost

Real Rework Cost Low Cost n11 n12

High Cost n21 n22

Table 1: Evaluating the accuracy of predicted classifications.

Correctness  
n22

n12 n22+
---------------------  

  100×=

Completeness  
n22

n21 n22+
---------------------  

  100×=

Code
45 %

Requirements
3 %

Functional
Specifications

26 %

Previous
Change

17 %
Design

9 %



Figure 5: Distribution of errors by class.

Coding errors are responsible for approximately half of the
errors found during acceptance testing (45%), followed by
errors from requirements and functional specifications
(29%), previous changes (17%), and finally design (9%). 

It is interesting to note the small amount of design errors
compared with requirements, specification, and coding
errors. In part, this stems from the fact that most of the
"design" of the GSS library is done during the specification
phase. The object classes and the relationship between such
classes of the three types of applications developed in the
FDD (orbit, attitude and mission support) are, in fact,
defined during the requirements analysis phase. The
description of the methods of GSS classes are also done
during the analysis. 

Distribution of Errors by Error Class
The components in the library are based on generalizations
of existing algorithms that were previously used in earlier
systems. Therefore logic and computational errors are
expected to be low (17% and 5% respectively as seen in
Figure 5).

Initialization errors are responsible for 17% of the errors
found during acceptance testing. (Initialization errors are
those which result from an incorrectly initialized variable,
failure to reinitialize a variable, or because a necessary
initialization was missing; failure to initialize or reinitialize a
data structure properly upon a component’s entry/exit is also
considered an initialization error). Once an application is
created using the component library, a minimal set of
integration tests are run. Particularly for an initial version of
an application, this can result in a large number of
initialization errors since this would be the first time the
components have been configured in this fashion.

Data (value or structure) are responsible for the largest
proportion of errors caught by the configurers and testers
(see Figure 5). Data errors are those provoked by any error
resulting from an incorrect use of a data structure. Examples
of data errors are the use of incorrect subscripts for an array,
the use of the wrong variable, the use of the wrong unit of
measurement, or the inclusion of an incorrect declaration of
a variable local to the component. One potential explanation

for the large incidence of Data errors is that the Ada
compiler catches a large proportion of the errors that would
fall in the other categories, but many common Data errors
will pass through compilation. This could be, for example,
specifying a variable as POSITIVE instead of NATURAL.

Characterizing the Cost of Rework

Distribution of Errors By Cost of Isolation and Correction
Most of the GSS errors had a low isolation cost (60%) and a
low correction cost (64%). It can be hypothesized that the
design of the GSS architecture and the use of coding
standards help reduce the time necessary to isolate errors, as
well as the application of object-oriented design principles.
Another explanation for the relatively low rework costs in
general is that the people responsible for correcting errors in
the GSS components have participated in the development of
these components. They have, therefore, a good
understanding of the design and realization strategies
implemented into the code.

It should be noted that the median number of components
changed for each CRF is 1 (maximum is 6), and the median
number of other components examined is zero (with a
maximum of 5). To test the hypothesis that the number of
changed and examined components is related to the cost of
isolation and correction, we used the Mann-Whitney U test
[24]. No difference was found for the number of components
examined when isolation cost was considered. When
considering correction cost, it was found that more
components are changed for high correction cost CRFs
compared to low cost CRFs (at an alpha level of 0.05). No
difference was found for number of components examined
and correction cost.

Impact of Error Source on Rework Effort
Table 2 shows the distribution between the categories of
error isolation cost and the error source. The contingency
table contains the frequency of CRFs in each cell and the
percentage of the total. We combined the Requirements and
Functional Specification sources together into one
“Analysis” category to avoid having expected frequencies
less than one in the table. Likewise, Table 3 shows the
distribution between the categories of error correction cost
and the source of error.

Observation of the table indicates that for analysis sources,
the isolation and correction costs tend to be low. We used the
Pearson chi-square statistic to determine if there is a general
association between source and rework cost. The probability
values for both the isolation cost and the correction cost table
were not significant at the 0.05 alpha level.1. Therefore,
there is no association between source of error and isolation
nor correction cost. 

1. The approximation of the X2 statistic to the chi-square distribution as-
sumes that expected frequencies are not too small. This is usually interpreted
to mean having at least 20% of expected frequencies greater than 5 and no
cell having an expected frequency less than 1 for tables with degrees of free-
dom greater than 1 [12]. However, it has been suggested that the convention-
al chi-square statistic may be used for 2xc tables where all expected
frequencies are as low as 1 [18].

Initialization
17 %

External Interface, 3 %

Internal
Interface

12 %

Computational
5 %

Logic
17 %

Data
45 %



Code Design Analysis
Previous 
Change Total

HIGH Isolation
Cost

13

22.4%

2

3.45%

4

6.9%

4

6.9%

23

LOW Isolation
Cost

13

22.4%

3

5.17%

13

22.41%

6

10.34%

35

Total 26 5 17 10 58

Table 2: Relationship between error source and isolation cost.

Code Design Analysis
Previous 
Change Total

HIGH Correction
Cost

9

15.52%

3

5.17%

5

8.62%

4

6.9%

21

LOW Correction
Cost

17

29.31%

2

3.45%

12

20.69%

6

10.34%

37

Total 26 5 17 10 58

Table 3: Relationship between error source and correction cost.

Computational Data Initialization Interface Logic Total

HIGH
Isolation

Cost

1

1.72%

11

19%

3

5.17%

2

3.45%

6

10.34%

23

LOW
Isolation

Cost

2

3.45%

15

25.86%

7

12%

7

12%

4

6.9%

35

Total 3 26 10 9 10 58

Table 4: Relationship between error class and isolation cost.

Computational Data Initialization Interface Logic Total

HIGH
Correction

Cost

1

1.72%

11

18.97%

2

3.45%

4

6.9%

3

5.17%

21

LOW
Correction

Cost

2

3.45%

15

25.86%

8

13.79%

5

8.62%

7

12%

37

Total 3 26 10 9 10 58

Table 5: Relationship between  error class and correction cost.



Impact of Error Class on the Cost of Rework
Table 4 shows the distribution between the class of error and
the isolation cost. We combined the Internal and External
Interface categories to avoid having cells with expected
frequencies less than one. The relationship between error
class and correction cost is depicted in Table 5. It can be
observed from the tables that interface errors tend to cost less
to isolate, and initialization errors tend to cost less to correct.
Chi-square tests however do not identify any statistically
significant association for either of the two tables. 

Modeling  the Cost of Rework
Table 6 shows the relationship between real and predicted
rework. The predictive validity criterion for the contingency
table presented in Table 6 is met at a one-tailed alpha level of
0.05.  The values of correctness and completeness are shown
in Figure 6. We found that correctness was 76% and
completeness 72%. These values were perceived to be
sufficient for decision making, especially when combined
with expert judgment.

In this paper we are concerned with rules that characterize
component versions that are costly to rework. The
proportion of components that match the rule and are
classified correctly by the rule give us a measure of how
accurate a particular rule is. The model we developed had
three interpretable rules for classifying high rework cost
component versions. These are shown in Figure 7. For
engineers involved with the GSS asset library, the rules were
perceived to be intuitive in the sense that they express the
fact that “more complicated things are more likely to cost
more to correct.” Moreover, the rules formalize the
characteristics of the more complicated component versions.

The three rules can be used as maximal thresholds when
developing new components. In some cases, there may be
good design reasons for a component to exceed the
threshold(s). Therefore the rules ought not be interpreted as
strictly proscriptive. If a new component matches one or
more of the rules, then the developer can decide whether it
needs to be changed to reduce its potential for being
associated with an error that is costly to isolate and correct.

Figure 8 shows the 3 internal product metrics that were
found useful in developing this model. These 3 metrics were
automatically selected by C4.5 from the set of metrics
provided by Amadeus.

The proscriptive guidelines provided in Figure 7 were found
from error data for a specific reusable components library.
Caution should be exercised in attempting to generalize
these rules beyond this context and applying them in a
different environment. The overall approach we have used,
however, can easily be generalized to other contexts. For
example, after collecting the appropriate data, another
organization could develop models for prediction and for
producing coding guidelines to manage and reduce rework
effort.

CONCLUSIONS
In this paper we reported on a study to model and understand
the cost of rework in a library of reusable software
components. We described how rework costs are distributed
during the error correction process, and developed a model
to predict the component versions that are associated with
errors that are costly to rework. The model was also used to
develop proscriptive coding rules that can be used by
programmers as guidelines to reduce the cost of rework in
the future.

Extensions of this work would include developing models
for predicting components that have a high risk of faults (to
help managers focus testing and inspections) and that can
also be used to provide guidelines to programmers. We have
used a specific set of internal product metrics for developing
the model. These metrics tended to be counts of elements of
a component. A different set of metrics that better
characterize the structure and design of components may
improve the predictive quality of the model, and also would
provide guidelines for improving design practices.

Predicted Rework 
Cost

Low 
Cost

High 
Cost

Real Rework Cost Low
Cost

23 10 33

High
Cost

12 31 43

35 41 76

Table 6: Predicted versus real rework categories.

Correctness 76% (31/41)

Completeness 72% (31/43)

Figure 6: Correctness and completeness results for the
prediction model.

Rule(s) Accuracy

FunctionCalls > 38 100%

DeclarationStatements > 59 90%

ProgrammerExceptionsUsed > 2 83%

Figure 7: Proscriptive coding rules and their accuracy.

Metric Name Brief Description

FunctionCalls The number of function calls.

DeclarationStatements The number of declaration 
statements, including those 
with and without initialization.

ProgrammerExceptionsUsed The number of exceptions used 
in the file.

Figure 8: Description of the metrics that were found useful 
for building the model.



Furthermore, it would be informative to compare models
where cost of rework is the dependent variable with models
where risk of fault is the dependent variable to determine if
the derived guidelines from the two models are
complementary or contradictory.
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