
National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Using Inspection Technology
in Object-oriented
Development Projects

Oliver Laitenberger, Colin Atkison, and
Khaled El Emam
June 2000

ERB-1077

NRC 44143

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Using Inspection Technology in Object-oriented
Development Projects

Oliver Laitenberger, Colin Atkison, and Khaled El Emam
June 2000

Copyright 2000 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Using Inspection Technology in Object-Oriented Development
Projects

Oliver Laitenberger , Colin Atkison
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6
67661 Kaiserslautern, Germany

+49 6301 707 200
{Oliver.Laitenberger, Colin.Atkinson}@iese.fhg.de

Khaled El Emam
National Research Council, Canada
Institute for Information Technology

Building M-50, Montreal Road
Ottawa, Ontario, Canada K1A OR6

Khaled.El-Emam@iit.nrc.ca

ABSTRACT
Software inspection is a proven approach for detecting and
removing defects immediately after software documents are
created. However, the advance of software technologies,
processes, and methods, such as the widespread adoption of
object-orientation, raises new problems regarding software
quality assurance with inspections. These primarily relate
to the question of how managers can organize a software
inspection in object-oriented development projects with
respect to the examined documentation and, once it has
been organized, how developers can perform the defect
detection activity in a systematic manner. This paper
presents the architecture-centric strategy for inspection
organization and the perspective-based reading technique to
address the two problems. The integration of these
approaches in the inspection approach allows practitioners
to set up and run cost-effective inspections in their object-
oriented development projects. To support this claim with
quantitative findings, this paper presents the results of a
controlled experiment to determine the feasibility and cost-
effectiveness of the approaches when used for the
inspection of UML-based design documents.

Keywords
Software Quality Assurance, Inspections, Unified
Modeling Language, Empirical Study

1 INTRODUCTION

A software inspection involves activities in which qualified
personnel should find the most defects in a cost-effective
manner. Despite the large body of inspection experience
accumulated over the last 20 years, the increasing adoption
of object-oriented development principles in the software
industry raises new issues regarding software quality
assurance with inspections. These issues require further
work on the question of how managers can organize a
software inspection with respect to the examined
documentation and, once it has been organized, how
developers can perform the defect detection activity in a
systematic manner.
The importance of the first question stems from the fact
that today’s software development projects face many
challenges due to their scale. They usually involve a large
number of developers who are all working together to
manufacture a single product. In doing so, the developers

create documents that together describe what the software
system is to do and how it does it. These documents, once
they are created, may consist of hundreds of pages that
obviously cannot be handled in a single inspection. Object-
oriented development principles. Particularly, the recent
publication of the Unified Modeling Language (UML)
accentuates this problem, since crucial information about
the software is distributed across several documents and
diagrams. Hence, the challenge consists of organizing
several inspections on the right document fragments.
However, this requires a rationale for partitioning and
grouping the documents and diagrams.

Once an inspection has been organized, the second question
addresses the process that inspectors follow to scrutinize
the selected document fragments for defects. In this
inspection phase, inspectors read the documentation to
determine whether quality requirements, such as
correctness, consistency, testability, or maintainability,
have been fulfilled. "Reading" implies the systematic
examination of the software documents to extract, gain, and
understand certain information about the software. Many
existing inspection implementations assume that inspectors
have the reading skills required for defect detection.
However, these skills are seldom developed in any
systematic manner in the education or training of software
professionals or students. Adequate technical support for
inspectors during defect detection can compensate for the
lack of reading skills and, thus, potentially result in
dramatic improvements in the cost-effectiveness of an
inspection. Therefore, not only are more procedural reading
techniques needed to alleviate this problem, but they must
also be tailored to the inspection organization strategy.

In this paper, we present a new approach to inspection
organization. The new strategy is based on the principle of
organizing inspections around logical entities from the
software architecture rather than around particular (types
of) documents. The choice of the logical entities determines
the document fragments that contain relevant information
to be scrutinized for defects in one particular inspection.
Although this approach, dubbed architecture-centric
inspection organization, is generally applicable for
inspection organization, we consider it particularly valuable
for the inspection of documents developed according to

object-oriented principles.

To address the second problem, we discuss reading
techniques that inspectors use during the defect detection
activity of an inspection. One of the reading techniques -
perspective-based reading (PBR) - will be explained in
more detail, since this technique represents a natural
complement to the architecture-centric strategy for
inspection organization and, at the same time, can be
tailored for defect detection in any kind of object-oriented
documentation. To demonstrate the cost-effectiveness of
this technique, we describe a controlled experiment to
compare the checklist-based reading approach (CBR) for
defect detection in UML design documents to the
perspective-based reading technique. The results of this
experiment indicate that inspection teams discovered, on
average, 58 percent of the defects in a software document
using PBR and 43 percent using CBR. Moreover, while
PBR teams exhibit an average cost per defect ratio of 56
minutes per defect, CBR teams exhibit an average cost per
defect ration of 132 minutes per defect. In this way,
inspection teams using PBR for defect detection have a
higher effectiveness than CBR, as well as a lower cost per
defect ratio than those applying CBR.

The remainder of this paper is organized as follows.
Section 2 presents a short description of the inspection
methodology. It explains the process and defines the
terminology. Section 3 describes the architecture-centric
strategy for inspection organization. Section 4 elaborates
upon reading techniques for software inspections and
perspective-based reading. Section 5 explains a controlled
experiment to validate this approach. Section 6 concludes.

2 INSPECTION PRINCIPLES
Software inspection is an approach that allows the detection
and removal of defects immediately after software
documents are created. Since the seminal introduction of
the generic notion of inspection to the software domain in
the early 1970s [9], it has evolved into one of the most
cost-effective methods for early defect detection and
removal [18]. Its proponents claim that inspections can lead
to the detection and correction of anywhere between 50 and
90 percent of defects [10]. Moreover, rework cost can be
reduced considerably, since defects are typically found
directly after they are introduced. Finally, early defect
detection and removal improves the predictability of
software projects and helps project managers stay within
schedule, since problems are unveiled throughout the early
development phases and costly rework cycles at the end of
the development or maintenance project are therefore
avoided. Considering the many benefits and the fact that
low defect density is not one of the strong points of the
object-oriented paradigm [13], object-oriented methods
would benefit enormously from a systematic inspection
method.

An inspection involves activities in which qualified

personnel determine whether software documents are of
sufficient quality for subsequent development activities.
Figure 1 illustrates a typical software inspection approach.

Figure 1: A Software Inspection

In this paper, we model an inspection in terms of its main
activities, that is, inspection planning, defect detection,
defect collection, and defect correction. There are two
reasons for using this terminology. First, we want to
emphasize that the problems and solutions we present in
this paper are independent of any particular inspection
implementation, such as that of Fagan [9] or Gilb and
Graham [10]. Second, by modeling the inspection process
in terms of its main activities we avoid ambiguity in the
terminology.

Inspection planning is performed by an organizer who
schedules all subsequent inspection activities. The
organizer is often the project manager, since he or she
organizes all activities for the software development
project. The defect detection and defect collection activities
can be performed either by inspectors (i.e., developers)
individually or in a group meeting. Since recent empirical
findings reveal that the synergy effect of inspection
meetings is rather low in terms of defects [11], [21], [24],
defect detection should be considered an individual rather
than a group activity. In this case, the individuals must
receive guidance in the form of systematic defect detection
or reading techniques. Defect collection, on the other hand,
is often performed in a team meeting (i.e., an inspection
meeting) lead by an inspection moderator. The main goals
of the team meeting are to agree on anomalies that
inspectors have detected individually, to eliminate false
positives, and to specify the defects for correction. Since a
team meeting is effort consuming and since some
development projects are performed at different sites or
even in different countries, a synchronous team meeting
may be replaced with another form of consolidation
activity, such as depositions [24]. An inspection usually
ends with the correction of the documented defects by the
author.

3 ARCHITECTURE-CENTRIC INSPECTION
 ORGANIZATION

This section addresses the question of how to organize an
inspection with respect to the examined documentation.

3.1 The Unit of Inspection
Before performing an inspection, the inspection organizer
must determine the subject of the inspection, that is, the
unit to be inspected. The term "unit" refers to the set of
information that inspection participants scrutinize for
defects in one particular inspection. The selection of the
"right" unit represents a problem in the software domain
because large software development projects have special
problems due to their scale. The volume of the developed
documentation is just too large to be handled in a single
inspection. Hence, several inspections must be organized
on different document fragments. However, this requires a
rationale for partitioning and grouping them. This problem
is comparable to the situation in other engineering
disciplines. The various plans for a bridge, for example,
cannot be inspected in a single inspection. Hence, they
need to be partitioned and grouped into smaller units for
which an inspection can be organized and performed.

Most existing inspection variations follow a document-
oriented strategy for inspection organization. This strategy
means that a particular inspection is organized around a
particular type of document, such as a requirements,
design, or code document (or parts of it), rather than the
structure or content of the information represented in the
documents.

Although at first sight the document-oriented approach
appears to be a good strategy, it leads to two difficulties.
First, crucial information is often distributed across various
parts of a document or even across different document
types. Thus, if the inspection is limited to a particular (part
of a) document, an inspector may miss crucial information
for a sound inspection. Object-oriented development
methods [4], [6], [23] and the recent appearance of the
Unified Modeling Language (UML) accentuate this
problem because they usually use different types of
diagrams to represent various sets of information. Hence,
information about a given logical entity, such as a class or
an object, can be described in many different documents,
and a specific document can contain information about
many different logical entities, that is, there is a many-to-
many relationship between logical entities and diagrams.
An inspection whose goal is to check a particular (part of a)
document may end up either having to analyze many
logical entities, or may only partially cover a logical entity
that it describes.

The second difficulty arises when the document or parts of
it is still too large after decomposing it. Hence, some

authors recommend the use of size information alone as a
further splitting criterion [8]. However, this
recommendation causes some problems as the following
example illustrates. Let us assume a code document (as part
of a larger system) has 20000 LOC after following the
document-oriented strategy for inspection organization. As
suggested in the literature [8], this partition obviously is
still too large to scrutinize for defects in a single inspection.
Hence, the document needs to be partitioned further. One
approach would be to split it into partitions of 500 LOC,
which is recommended in the literature [10], and inspect
the first 500 LOC in the first inspection, the next 500 LOC
in the second inspection, and so on. However, the first 500
LOC provides information about the definition and
declaration of variables, which are a necessary prerequisite
for inspecting the other code fragments. This example
demonstrates that the document-oriented approach and the
use of size information alone to decide upon the unit of
inspection do not solve the unit of inspection problem in
each and every case.

3.2 Architecture-centric Principle
Software is unique among engineering products in that,
strictly speaking, it is invisible and has no concrete material
manifestation [5]. Whereas a civil engineer, for example,
can inspect both the documentation of a bridge and the
actual elements of it, or a mechanical engineer can inspect
the documentation of an engine as well as the physical parts
that he or she builds, a software engineer cannot actually
look at a piece of a software system per se. He or she can
only inspect the representations, the descriptions, or the
documentation of it (or parts of it). This observation leads
to a new solution to the unit of inspection problem.

The new solution distinguishes between a logical entity and
the physical documentation of the entity. This situation is
graphically depicted in Figure 2.

Figure 2: Logical Entities and their Documentation

A triangle, or a line between two triangles, represents a
logical entity. A square, on the other hand, represents the

documentation of one or more logical entities. The new
strategy suggests that an inspection be organized around
logical entities rather than the physical documentation of
the logical entities. The choice of the logical entity or the
logical entities determines the document fragments that
contain relevant information to be scrutinized for defects in
one particular inspection.

Although the majority of modern software engineering
methods, such as the Unified Process [14] or the Object
Modeling Technique [23], explicitly separate logical
entities from their documentation, this has never been
considered useful for inspection organization. Of course,
each method uses its own terminology, which may be
different from the one used in this paper. The Unified
Process, for example, distinguishes between structural
elements, such as subsystems or classes, and models that
describe the structural elements, such as use-case or
collaboration diagrams [14]. Hence, the Unified Process
uses the term "structural element" instead of logical entity
and "model" instead of documentation of the logical entity.
We recognize that various terms could have been used in
this paper to describe this difference. Examples are "unit"
or "concept" instead of "logical entity" and "model",
"representation", or "description" instead of documentation.
We decided to use the word "logical entity", since it best
conveys the conceptual and invisible nature of software,
and "documentation", since it best conveys the idea of
something tangible that can be used for the purpose of
inspection.

In a more general sense, the logical entities making up a
system, and the relationship between them, are collectively
viewed as the architecture of the system. The architecture
encompasses the significant decisions about the
organization of a software system, the major structural
elements and their relationship that will comprise the
system, and the composition of the elements into
progressively larger subsystems. Due to the importance of
the architecture, we call the new strategy the architecture-
centric approach for organizing inspections.

3.3 The Benefits of the Architecture-centric Solution
The architecture-centric solution for inspection
organization is beneficial for three reasons: First, the set of
information for each logical entity by definition is logically
self-contained and conceptually complete. It therefore
provides an inspector with all crucial information for
performing a sound inspection and, at the same time,
represents the appropriate set of information that is
intellectually manageable. The latter prevents inspectors
from being swamped with a lot of unnecessary
information. Second, the architecture-centric approach is
scalable. If the documentation of a logical entity is still too
large, an inspection organizer can look at the substructure
of the logical entity and choose an appropriate logical
entity of smaller granularity. This process can be repeated

until the right scope for a single inspection is determined.
Finally, the architecture-centric approach has been
implicitly embedded in conventional structured
development processes that use decomposition as a
principle for structuring software systems. The most
prominent example for such a process is the Cleanroom
Process [15]. However, the use of the architecture-centric
solution is not limited to conventional design principles. It
can also be applied in the context of object-oriented
development methods. This is important because over the
past decade, object-oriented development methods have
replaced conventional structured approaches as the
embodiment of goodness in software development, and are
now the approach of choice in most new software
development projects. Software inspections must be
tailored to this new situation.

3.4 Example: Architecture-centric Inspection
Organization in the Unified Process
The Unified Process (UP) proposed by Jacobson,
Rumbaugh, and Booch [14], is a generic process
framework that can be specialized for a very large class of
software systems. A specific instance of it is the Rational
Unified Process. The UP is component-based, which means
that the software system being built is made up of software
components. The distinguishing aspects of the UP are
captured in three key phrases – “use-case driven”,
“architecture-centric”, and “iterative and incremental”.

For organizing an inspection, the use-case driven and
architecture-centric properties of the UP are the most
important. In the UP, use-cases are the driver for the
architecture. The knowledge of the architecture in turn
helps capture the requirements as use-cases. Hence, the
development of both the use-cases and the architecture can
be regarded as an iterative process.

Architecture-centric software inspections in the context of
the UP can be organized around components, their
interfaces, and their interactions. Components as seen from
the development point of view are subsystems that have
high internal cohesion and low external coupling and are
reusable by other developers. A component as part of the
architecture is best represented by multiple, coordinated
architectural views. An architectural view is an abstraction
of a use-case, design, implementation, process, and
deployment model that focuses on its structure and
essential elements. If, in the context of the development
project, some of the models are not yet available, the
inspection can be organized with the available models. For
example, at the beginning of the project, there may only be
the use-case model in the form of use-case diagrams as well
as the design model in the form of class diagrams.

An example of the architecture-centric approach in the
context of the UP is depicted in Figure 3, in which the top-
level component, i.e., the system, is partitioned into two
sub components. After partitioning, an inspection can be

organized for each of the subcomponents.

Figure 3: Architecture-centric Inspection Organization
for the Unified Process

Figure 3 depicts the documentation of a software system. It
consists of a use-case model, a design model, an
implementation model, and a deployment model. Under the
assumption that the size of the documentation is too large
to handle it in one inspection, the documentation needs to
be partitioned. A document-oriented strategy would suggest
performing an inspection for the use-case models, the
design models, the implementation models, and the
deployment models. The architecture-centric strategy, on
the other hand, considers the logical structure of the system
for partitioning. In this example, the system consists of two
components: Component A and component B. Hence, the
architecture-centric principle suggests performing an
inspection for the documentation of component A (subset
of the use-case model and the implementation model) and
an inspection for the documentation of component B
(subset of the use-case model and the implementation
model, design model and deployment model).

4 READING TECHNIQUES FOR DEFECT
 DETECTION IN INSPECTION

This section addresses the problem of how to provide
defect detection support for inspection participants.

4.1 The Lack of Systematic Reading Techniques for
Defect Detection
Although each of the presented inspection activities is
important for a successful inspection, the most important
one is the defect detection activity. In this phase of an
inspection, inspectors read the software document(s) to
determine whether quality requirements, such as
correctness, consistency, testability, or maintainability,
have been fulfilled. "Reading" implies the systematic
examination of a document to extract, gain, and understand
certain information about the inspected software. The
ability to read, and to understand what has been read, are
therefore critical skills for the participant of an inspection.

Understanding itself is a necessary prerequisite for finding
more crucial defects in the software documentation. These
defects are often the expensive ones if detected in later
development phases, and the most difficult to detect in an
inspection, since they usually go well beyond more trivial
defects, such as spelling mistakes.

4.2 Existing Reading Techniques
In practice, most industrial inspection implementations use
either no specific reading approach (often termed ad-hoc)
or checklist-based reading (CBR) during defect detection
[9], [10]. Ad-hoc reading, as its name implies, provides no
explicit advice for inspectors as to how to proceed, or what
specifically to look for, during the reading activity. Hence,
the results of the reading activity in terms of potential
defects or problem spots are fully dependent on human
experience and expertise. Checklists offer stronger support
mainly in the form of yes/no-questions that inspectors need
to answer while reading a software document. Gilb and
Grahams’ manuscript on software inspection states that
checklist questions interpret specified rules within a project
or an organization [10]. Although a checklist provides
advice about what to look for in an inspection, it does not
describe how to identify the necessary information and how
to perform the required checks. Moreover, for CBR as well
as for ad-hoc it remains unclear as to what degree a
systematic reading process was applied.

Recently, Vic Basili proposed scenario-based reading [1] to
offer more procedural support for defect detection. The
basic idea of a scenario-based reading technique is the use
of so-called scenarios. A scenario can be defined as an
algorithmic guideline for the inspector that describes how
to go about finding the required information in a software
document, as well as what that information should look
like. Hence, a scenario-based approach is more prescriptive
than either the ad-hoc or the checklist-based technique. A
particular promising scenario-based reading technique is
perspective-based reading [2] [15].

4.3 Perspective-based Reading

Goal of Perspective-based Reading

The basic goal of PBR is to examine the documentation of
a software entity from the perspectives of the entity’s
various stakeholders for the purpose of identifying defects.
An inspector in a perspective-based inspection reads the
documentation from the perspective of a particular
stakeholder in such a way as to determine whether it
satisfies the stakeholders’ particular needs. A stakeholder
perspective may be, for example, a future user of the
system who wants to ensure the completeness of the
inspected analysis documents. If the documentation of the
software entity meets the stakeholders’ quality
requirements, the end product, that is the final software
system will meet the specified quality goals. The reading
process itself is driven by a perspective-based reading

scenario.

Perspective-based Reading Scenarios

Throughout the reading process, an inspector follows the
instructions of a perspective-based reading scenario (in
short: scenario). A scenario tells the inspector how to go
about reading the documentation from one particular
perspective and what to look for.

A scenario consists of an introduction, instructions, and
questions framed together in a procedural manner. The
introductory part describes the stakeholder’s interest in the
logical entity and explains the quality factors most relevant
for this perspective. The instruction part describes what
kind of document an inspector is to use, how to read the
document, and how to extract the appropriate information
from them. While identifying, reading, and extracting
information, inspectors may already detect some defects.
However, the motivation for providing guidance for
inspectors in the form of instructions on how to perform the
reading activity is three-fold. First, instructions help an
inspector gain a focused understanding of the entity.
Understanding involves the assignment of meaning to
information in a particular document and is a necessary
prerequisite for detecting more subtle defects which are
often the expensive ones if detected and removed in later
development phases. Second, the instructions require an
inspector to actively work with the documentation rather
than passively scanning it. Third, the architecture-centric
strategy ensures that the relevant information for all
stakeholders is available for scrutiny. However, since the
attention of an inspector is focused on the information most
interesting for a particular stakeholder, the inspector is not
swamped with details irrelevant for the stakeholder’s
perspective. A process for scenario development is
described in [15], [19].

Tester’s Scenario

The main goal of a tester is to ensure the testability of the system. High quality thus
corresponds to full testability. Assume that you have to develop some test cases for
the system in order to perform
acceptance testing. A test case consists of a set of input values plus a set of output
values and/or state changes expected for each combination of values. Follow the
instructions below and answer the questions carefully.
Locate the operations for the system under inspection. Identify the input and output
parameters for each single operation. Define equivalence classes for these parameters.
Use these classes to define a minimal set of test cases to fully exercise the operations.

While following the instructions answer the questions:
1. Are the input and output parameters as described in the document represent

the input and output parameters intended by the operation?
2. Can all possible equivalence classes of input values be properly addressed

by the operation?
3. operations’ preconditions indicated to help define input parameters for test-

cases?

Figure 4: Reading from a tester’s perspective.

Once an inspector has achieved an understanding of the
documented information about an entity chosen by the

architecture-centric approach, he or she can examine and
judge whether it fulfils the required quality properties. For
making this judgement an inspector is supported by a set of
questions that are answered while following the
instructions. Figure 4 shows an example for reading from
the perspective of a tester.

5 AN EMPIRICAL STUDY
The architecture-centric inspection organization and the
PBR technique are not silver-bullet techniques [5], that is,
they do not cure every inspection-related problems in all
industrial settings. As a consequence, the theoretical
conditions under which these approaches help an inspection
team detect the most defects most rapidly need to be
identified and examined empirically. Such expectations or
conditions may include, for example, statements such as the
following: "when developers have little experience with the
document type, the PBR technique is more effective than a
traditional form of reading". Hence, different conditions
need to be studied empirically to identify the techniques’
strengths and weaknesses. The level of control imposed on
the conditions determines whether a study qualifies as a
case study, quasi-experiment, or controlled experiment [7].
The results of the studies help researchers gain an
understanding of how a technique works and why the
technique is useful. Practitioners, on the other hand, benefit
from those studies because the results help them assess the
leverage they can expect from a particular technique. This
may influence their decision as to whether and how to
adopt it in their projects. In this section, we describe the
essence of a study to compare perspective-based reading
(PBR), for defect detection in object-oriented design
documents (documentation) of software systems (logical
entity) using the notation of the Unified Modelling
Language (UML) to the more traditional checklist-based
approach (CBR). The experiment is described in full detail
in [17].

5.1 Goal of the Study
We focus our evaluations on two important aspects of
software inspections in object-oriented development: their
effectiveness and their cost1. Effectiveness is defined as the
proportion of defects in the document that were found
during an inspection. Cost is defined in terms of the effort
involved in finding a single defect. Effort is the most
important factor in determining the cost of a software
inspection.

We consider in this experiment the team results as our unit
of analysis for the following reason. When using CBR,
individual subjects do not adopt a particular perspective
while reading the documents, whereas they do when they

1 Another evaluative criterion of software inspections is
their interval (i.e., elapsed calendar time) [24]. However,
this is not addressed in the study.

are implementing PBR. With a perspective, a subset of the
defects in the document have a high probability of being
detected, while the remainder of the defects have a
relatively low probability of being detected by that
perspective [19]. Conversely, with CBR one would expect
more uniformity in the probability of detection across
defects. This reasoning makes it clear that we do not
necessarily expect individual PBR inspectors to be more
cost-effective than individual CBR inspectors. Rather, we
expect the benefits of PBR to become apparent at the
overall team level. Indeed, it is the team result that
determines the results of an inspection. One may argue that
individual variability influences the team results. However,
in the context of our experiment, individual variability is
controlled by random assignment of subjects to teams. We
can therefore state the following expectations for the
experiment:

1. The Effectiveness of PBR is Greater than the
Effectiveness of CBR for Teams.
We expect that inspection teams detect more defects
using PBR than CBR. This results from the fact that
the probability of finding a unique defect through PBR
is greater than for CBR [19].

2. Overall Inspection Cost is Lower with PBR than
with CBR.
We would expect that the overall cost per defect for
both phases to be smaller for PBR than for CBR.

Based on our expectations, we investigated the following
two hypotheses for the experiment:

H01 An inspection team is as effective or more
effective using CBR than it is using PBR.

H02 An inspection team using PBR finds defects at
the same or higher cost per defect than a team
using CBR for all phases of the inspection.

In the experiment, we investigate directional null
hypotheses. A directional null hypothesis can be regarded
as a statement that there is a difference between the two
groups opposite to that predicted. According to the logic of
testing statistical hypotheses [25], we are interested in
being able to reject these null hypotheses. The hypotheses
are preceded by a zero to indicate that these are the null
hypotheses being tested. We use standard t-test as well as
permutation tests to validate the hypotheses [11], [25].

5.2 Study Design
The experimental design is depicted in Table 1. We use a
notational system in which X stands for a treatment and O
stands for an observation; subscripts 1 and 2 refer to the
sequential order of implementing treatments.

Experiment

Group 1 XPBR O1 XCBR O2

Group 2 XCBR O1 XPBR O2

Table 1: The design of the experiment.

For the experiment, subjects were randomly assigned to
two groups2: Group 1 and Group 2. The first group (Group
1) performed a reading exercise using PBR first (XPBR), and
then measures were collected (O1). Subsequently, they
performed a reading exercise using CBR (XCBR), and again
measures were collected (O2). The second group followed
the counterbalanced sequence. This is a classic 2x2
repeated measures design described more fully in [25].

5.3 Perspective-based Reading of Object-Oriented
Design Documents
We identified three perspectives for the inspection of a
design document. Hence, a PBR team consisted of three
inspectors each of which had read the design document
from one of the three perspectives. The three perspectives
were a designer perspective, a tester perspective, and an
implementer perspective An inspector reading the design
documents from the point of view of a designer is primarily
interested in the correctness between the design models and
the analysis documents. Hence, he or she has to extract
relevant information from the design documents and
compare it to the one described in the analysis documents.
An inspector reading the design documents from the
perspective of a tester identifies the different operations
that the system is to perform in the design models and tries
to set up test cases with which he or she can ensure the
correct behaviour of each operation. Then, the inspector is
supposed to mentally simulate each operation using the test
cases as input values and to compare the resulting output to
the description in the analysis documents. Finally, an
inspector reading the design documents from the
perspective of an implementor makes sure that all required
information is provided in the design models to implement
the system. This involves completeness checks as well as
more difficult checks on the feasibility of the design.

5.4 Subjects
The subjects in this experiment were 18 practitioners with
various backgrounds. Before the course they primarily
worked as programmers in industry and had various levels
of experience in object-oriented programming. In the
experiment, they were randomly assigned to one of the two
groups and, within each group, to one of the three
perspectives according to the experimental design.

2 For the random assignment, the subjects drew numbers
from an envelope.

5.5 Results
5.5.1 Effectiveness of Inspection Teams
Figure 5 depicts a box-plot of the defect detection
effectiveness of the inspection teams when applying the
two different reading techniques. Box-plots provide
information about the distribution of data points, such as
the center (mean value), spread (standard deviation), and
minimum/maximum values.

Figure 5: Defect Detection Effectiveness.
(Mean values: CBR: 0.43; PBR: 0.58)

Overall inspection teams found more defects using the PBR
technique than using the CBR technique. Using a matched-
pair t-test the difference is statistically significant (t=3.17,
p=0.025). Since the t-test makes several assumptions, we
also performed a permutation test [11]. The permutation
test revealed an exact p-value of 0.0313. We failed to detect
a carry-over effect for the different sequences. This means
that the sequence of using the various reading techniques
did not influence the results of this study.

Based on these findings, we can reject hypothesis H01 and
conclude that an inspection team is more effective, i.e.,
detect more defects, using the PBR technique than using
CBR.

5.5.2 Cost-Effectiveness of Inspection Teams
Figure 6 depicts a box-plot of the cost per defect ratio of
the overall inspection when using the two different reading
techniques.

The team with the PBR technique had a lower cost per
defect ratio using the CBR technique than using the PBR
technique when considering the effort for the overall
inspection. Using a matched-pair t-test the difference is
statistically significant (t=-6.53, p=0.001). These findings
were also confirmed with the permutation test (p=0.0156).
We failed to detect carry-over effects. The study results
therefore suggest that the PBR technique improve the cost-
effectiveness of inspection teams.

Based on these findings, we can reject hypothesis H02. This
means that PBR teams are more cost-effective, i.e., find

defects at a lower cost per defect ratio, than CBR teams.

Figure 6: Cost per Defect for the Overall Inspection
(CBR: 132 minutes per defect; PBR: 56 minutes per

defect).

6 SUMMARY
Software inspection is regarded as one of the most effective
methods for software quality improvement. To maintain its
cost-effectiveness in the context of object-oriented
development projects, two major inspection-related issues
must be addressed. The first one is the question of how to
organize an inspection with respect to the examined
documentation. The second one is the question of how to
provide systematic reading support for inspection
participants.

In this paper, we have described a new approach for
inspection organization. This approach distinguishes
between logical entities and their documentation. We argue
that logical entities from the software architecture should
be used for inspection organization rather than their
documentation. This helps ensure that inspectors are
provided with appropriate amount of information for a
sound inspection.

To support the defect detection activity of inspection
participants in a systematic manner, we have explained the
perspective-based reading technique. This technique
requires inspectors to analyze the documentation of a
logical entity from various stakeholder perspectives. In
doing so, the technique provides procedural guidance on
what to check and on how to perform the checking.

In a final step, we have presented the essence of a
controlled experiment to compare the effectiveness and the
cost per defect ratio of the perspective-based reading
technique to checklist-based reading. The comparison was
performed through a controlled experiment with
practitioners participating in a course on object-oriented
development. During the experiment the subjects used the
CBR approach as well as the PBR approach for defect
detection in design documents. The design documents were
specified in the UML. Our experimental results indicate
that the effectiveness of teams using PBR is greater than of

those using CBR. Furthermore, we found that the cost per
defect ratio using PBR is smaller than with CBR during the
defect detection phase of inspections. Overall, we found
that the cost per defect for the whole inspection is lower
with PBR than with CBR. Therefore, PBR has
effectiveness and cost advantages when compared to CBR.

Our findings provide evidence that the architecture-centric
strategy and the perspective-based reading technique is a
promising approach for achieving high quality in object-
oriented development projects.

ACKNOWLEDGEMENT
We would like to thank Maud Schlich from Fraunhofer
IESE, Germany, for her contribution to the success of the
empirical study.

REFERENCES
1. V.R. Basili. Evolving and Packaging Reading

Technologies. Journal of Systems and Software, 38(1),
July 1997.

2. V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F.
Shull, S. Sorumgard, and M.V. Zelkowitz. The
Empirical Investigation of Perspective-based Reading.
Journal of Empirical Software Engineering,
2(1):133-164, 1996.

3. J. Barnard and A. Price. Managing Code Inspection
Information. IEEE Software, 11(2):59-69, March 1994.

4. G. Booch. Object Oriented Analysis and Design with
Applications. Benjamin/Cummings, Redwood City,
California, 2nd edition, 1994.

5. F. P. Brooks, Jr. No Silver Bullet: Essence and
Accidents of Software Engineering. IEEE Computer,
20(4):10-19, April 1987.

6. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H.
Gilchrist, F. Hayes, and P. Jeremaes. Object-Oriented
Development: The Fusion Method. Prentice Hall,
1993.

7. T.D. Cook and D.T. Campbell. Quasi-
Experimentation: Design and Analysis Issues for Field
Settings. Rand McNally College Publishing Company,
Chicago, 1979.

8. D. A. Christenson, H. T. Steel, and A. J. Lamperez.
Statistical Quality Control applied to Code Inspections.
IEEE Journal Selected Areas in Communication,
8(2):196-200, February 1990.

9. M. E. Fagan. Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems
Journal, 15(3):182-211, 1976.

10. T. Gilb and D. Graham. Software Inspection. Addison-
Wesley Publishing Company, 1993.

11. P. Johnson and D. Tjahjono, Does Every Inspection
Really Need a Meeting. Journal of Empirical Software
Engineering, 3(1):9-35, 1998.

12. P. Good. Permutation Tests: A Practical Guide to
Resampling Methods for Testing Hypotheses. Springer
Verlag, 1994.

13. Les Hatton. Does OO Sync with How We Think?
IEEE Software, 15(3):46-54, May 1998.

14. I. Jacobson, G. Booch, J. Rumbaugh, The Unified
Software Development Process, Addison Wesley,
1998.

15. O. Laitenberger, Cost-effective Detection of Software
Defects through Perspective-based Inspection. PhD-
Thesis, University of Kaiserslautern, 2000.

16. O. Laitenberger and C. Atkinson. Generalizing
Perspective-based Inspection to handle Object-
Oriented Development Artifacts. In Proceedings of the
21nd International Conference of Software Engineering,
1999.

17. O. Laitenberger, C. Atkinson, M. Schlich, and K. El
Emam. An Experimental Comparison of Reading
Techniques for Defect Detection in UML Design
Documents. Accepted for Publication in the Journal of
Systems and Software, also published as ISERN-
Technical Report 001.00/E, 2000.

18. O. Laitenberger and J.-M. DeBaud. An Encompassing
Life-Cycle Centric Survey of Software Inspection.
Journal of Systems and Software, jan. 2000.

19. O. Laitenberger, K. El Emam, and T. Harbich. An
Internally Replicated Quasi-Experimental Comparison
of Checklist and Perspective-based Reading of Code
Documents. IEEE Transactions on Software
Engineering, 2000.

20. R. C. Linger, H. D. Mills, and B. I. Witt. Structured
Programming: Theory and Practice. Addison-Wesley
Publishing Company, 1979.

21. A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta.
An Experiment to Assess the Cost-Benefits of Code
Inspections in Large Scale Software Development.
IEEE Transactions on Software Engineering,
23(6):329-346, June 1997.

22. Rational Software Coperation. Unified Modeling
Language Documentation Set, Version 1.1, September
1997.

23. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, 1991.

24. L. G. Votta. Does Every Inspection Need a Meeting?
ACM Software Eng. Notes, 18(5):107-114, December
1993.

25. B. J. Winer, D. R. Brown, and K. M. Michels.
Statistical Principles in Experimental Design, 3rd
edition. McGraw Hill Series in Psychology, 1991.

