I*I National Research Conseil national ERB-1073

Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

MC-CANIC

Thresholds for
Object-Oriented
Measures

Saida Benlarbi, Khaled EI-Emam,
Nishith Goel, and Shesh N. Rai
March 2000

1+1

Can ada NRC 43652



National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

Thresholds for Object-Oriented Measures

Saida Benlarbi, Khaled El Emam,

Nishith Goel, and Shesh N. Rai
March 2000

Copyright 2000 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.



Thresholds for Object-Oriented Measures

Saida Benlarbi@
Khaled El Emamb
Nishith Goel°
Shesh Raid

a Alcatel CID, Canada
b National Research Council, Canada
¢ Cistel Technology, Canada
d St. Jude Children’s Research Hospital, USA

Abstract

A practical application of object-oriented measures
is to predict which classes are likely to contain a
fault. This is contended to be meaningful because
object-oriented measures are believed to be
indicators of psychological complexity, and classes
that are more complex are likely to be faulty
Recently, a cognitive theory has been proposed
suggesting that there are threshold effects for many
object-oriented measures. This means that object-
oriented classes are easy to understand as long as
their complexity is below a threshold. Above that
threshold their understandability decreases rapidly,
leading to an increased probability of a fault. This
occurs, according to the theory, due to an overflow
of short-term human memory. If this theory is
confirmed, then it would provide a mechanism that
would explain the introduction of faults info object-
oriented systems, and would also provide some
practical guidance on how to design object-oriented
programs. In this paper we empirically test this
theory on two C++ telecommunications systems.
We test for threshold effects in a subset of the
Chidamber and Kemerer (CK) suite of measures.
The dependent variable was the incidence of faults
that lead to field failures. Our results indicate that
there are no threshold effects for any of the
measures studied. This means that there is no
value for the studied CK measures where the fault-
proneness changes from being steady to rapidly
increasing. The results are consistent across the
two systems. Therefore, we can provide no support
to the posited cognitive theory.

1 Introduction

Much recent research work has empirically
investigated the relationship between object-
oriented measures and class fault-proneness’
[11051[6][8][9]1[11][12][14][32][53]. Once validated,
such measures can serve as leading indicators of
fault-prone classes. Fault-prone classes can then
be targeted for specific quality management action,
such as more intensive inspections and testing, or
they may even be redesigned.

An appealing operational approach for quality
management using object-oriented measures is to
develop thresholds. Thresholds are defined as [41]
"heuristic values used to set ranges of desirable and
undesirable metric values for measured software.
These thresholds are used to identify anomalies,
which may or may not be an actual problem." For
example, we can say that a certain coupling
measure has a threshold of seven. If the measured
value for a particular class is larger than seven, then
we could flag that class as high risk.

Thresholds have a practical, theoretical, and
methodological significance. It is much easier for
quality assurance personnel to use thresholds for
identifying potentially high risk classes; they are
more actionable than statistical models and
equations that commonly result from validation
studies. Furthermore, Hatton [33][34] has made the

1 A fault-prone class, as used in this paper, is defined as one
that has a high probability of having a fault that causes a
field failure. Other outcomes of interest that have been
studied are productivity [17], maintenance effort [40], and
development effort [17][45][44].



case for thresholds based on a cognitive theory.
Specifically, he uses a human memory model to
suggest that more "complex" classes will overflow
short-term memory, leading to more faults. As a
discipline, it is important to empirically test the
versimilitude of such theories since they, if verified,
can greatly improve our understanding of object-
oriented design. For instance, if a threshold theory
is confirmed, then it would provide one mechanism
for explaining the introduction of faults into object-
oriented systems. Finally, if indeed there are
thresholds, then empirical models that are used to
validate object-oriented measures would fit actual
data much better. This would result in improved
predictability of high-risk classes.

Henderson-Sellers [35] emphasizes the practical
utility of thresholds?2 by stating that "An alarm would
occur whenever the value of a specific internal
metric exceeded some predetermined threshold."”
Lorenz and Kidd [41] present a number of
thresholds for object-oriented measures based on
their experiences with Smalltalk and C++ projects.
Similarly, Rosenberg et al. [47] have developed
thresholds for a number of popular object-oriented
measures that are used for quality management at
NASA GSFC. French [30] describes a technique for
deriving thresholds, and applies it to measures
collected from Ada95 and C++ programs. However,
none of the above studies validated the thresholds
systematically by showing that classes that exceed
them are indeed more fault-prone than classes that
are below the thresholds.

Chidamber et al. [17] state that the premise behind
managerial use of object-oriented measures is that
extreme (outlying) values signal the presence of
high complexity that may require management
action. They then define a lower bound for
thresholds at the 80th percentile (i.e., at most 20%
of the observations are considered to be above the
threshold). They subsequently determine thresholds
using exploratory analysis. The authors note that
this is consistent with the common Pareto (80/20)
heursitic. The thresholds that they use are shown to
be related to managerial variables such as
productivity and development effort, but they do not
demonstrate such a relationship for fault-proneness.

In this paper we present a statistical technique for
estimating and evaluating thresholds, and appy it on
a subset of the Chidamber and Kemerer (CK)

2 The utility of thresholds for procedural applications has
been noted by Lewis and Henry [39] where they describe a
system that uses percentiles on procedural measures to
identify potentially problematic procedures.

measures [15]. It has been noted that for historical
reasons the CK measures are the most referenced
[10]. Most commercial static analysis and
measurement tools available at the time of writing
also collect these measures. The study was
performed initially on a C++ telecommunications
applications, and replicated with another C++
telecommunications application from a different
organization.

Briefly, our results indicate that there are no
thresholds for any of the studied CK measures, and
this is consistent across both systems. These
results suggest extreme caution when developing
thresholds: they must be validated because
otherwise this may lead to inefficient quality
management practices. Furthermore, practitioners
would be prudent not to rely on published
thresholds, especially those that have not been
validated. From a research perspective, these
results question the human memory theory that
explains the existence of thresholds. To our
knowledge, this theory has not received any
confirmatory empirical evidence for object-oriented
software, and our study constitutes strong
disconfirmatory evidence.

The following section presents the justification for
thresholds, an overview of thresholds already
derived, and a description of the CK measures that
we evaluate. In Section 3 we present the details of
our research method, and Section 4 includes our
results. We conclude the paper in Section 5 with a
summary and the implications of our findings.

2 Background

2.1 Theory and Evidence For A Threshold
Effect

A theoretical basis for developing quantitative
models relating product measures and external
quality measures has been provided in [9], and is
summarized in Figure 1. There, it is hypothesized
that the structural properties of a software
component (such as its coupling) have an impact on
its cognitive complexity. Cognitive complexity is
defined as the mental burden of the individuals who
have to deal with the component, for example, the
developers, testers, inspectors, and maintainers.
High cognitive complexity leads to a component
exhibiting undesirable external qualities, such as
increased fault-proneness and reduced
maintainability.



affect

Structural Class affect —
Propertiess —m—m————p cCognltlv_e
(e.g., coupling) omplexity

» External Attributes
(e.g., fault-proneness,
< maintainability)

indicate

Figure 1: Theoretical basis for the development of object oriented product measures.

According to this theory, object-oriented measures
that affect cognitive complexity will therefore be
related with fault-proneness. Typically, structural
properties such as coupling and cohesion are
considered to exert significant influence on cognitive
complexity. For instance, software systems
composed of highly coupled classes tend to be
error-prone, hard to understand and difficult to
maintain. On the other hand, systems with loosely
coupled classes that are highly cohesive tend to be
less error prone, easier to correct, extend, and adapt
to new features.

The above theory does not hypothesize any
specific threshold effects. However, Hatton [33] has
proposed a cognitive explanation as to why a
threshold effect would exist between "complexity"
measures and faults.3 This can be considered as an
extension of the above basic theory.

The proposed cognitive explanation is based on
the human memory model, which consists of short-
term and long-term memory. Hatton argues that
Miller's work [43] shows that humans can cope with
around 7 +/- 2 pieces of information at a time in
short-term memory, independent of information
content. He then refers to [36] where they note that
the contents of long-term memory are in a coded
form and the recovery codes may get scrambled
under some conditions. Short-term memory
incorporates a rehearsal buffer that continuously
refreshes itself. He suggests that anything that can
fit into short-term memory is easier to understand
and less fault-prone. Pieces that are too large or too
complex overflow, involving use of the more error-
prone recovery code mechanism used for long-term
storage. In a subsequent article, Hatton [34]
extends this model to object-oriented development.

It should be noted that if a threshold theory is
substantiated, this could have important
implications. It would provide us with a mechanism

3 Hatton's model also suggests that components that are of
low complexity do not use short-term memory efficiently,
and that failure to do so also leads to increased fault-
proneness. However, this aspect of his model has been
criticised recently [26] and therefore will not be considered
further.

that would explain the introduction of faults into
object-oriented applications.

Below we present the empirical evidence that can
be construed as supportive of this theory.

2.1.1 Size Thresholds

Hatton [34] argues that the concept of
encapsulation, central to object-oriented
development, lets us think about an object in
isolation. If the size of this object is small enough to
fit into short-term memory, then it will be easier to
understand and reason about. Objects that are too
large and overflow the short-term memory tend to be
more fault-prone. However, a recent study
demonstrated that there are no size thresholds for
object-oriented classes [26]. Therefore, we do not
consider size thresholds further.

2.1.2 Inheritance Thresholds

Inheritance is believed to make the understandability
of object-oriented software difficult. A survey of
object-oriented practitioners showed 55% of
respondents agreeing that inheritance depth is a
factor when attempting to understand object-
oriented software [20]. It has been noted that
"Inheritance gives rise to distributed class
descriptions. That is, the complete description for a
class D can only be assembled by examining D as
well as each of D's superclasses. Because different
classes are described at different places in the
source code of a program (often spread across
several different files), there is no single place a
programmer can turn to get a complete description
of a class" [38]. While this argument is stated in
terms of source code, it is not difficult to generalize it
to design documents. Wilde et al.'s study [57]
indicated that to understand the behavior of a
method one has to trace inheritance dependencies,
which is considerably complicated due to dynamic
binding. A similar point was made in [38] about the
understandability of programs in languages that
support dynamic binding, such as C++.

In a set of interviews with 13 experienced users of



object-oriented programming, Daly et al. [19] noted
that if the inheritance hierarchy is designed properly
then the effect of distributing functionality over the
inheritance hierarchy would not be detrimental to
understanding. However, it has been argued that
there exists increasing conceptual inconsistency as
one travels down an inheritance hierarchy (i.e.,
deeper levels in the hierarchy are characterized by
inconsistent extensions and/or specializations of
super-classes) [23], therefore inheritance
hierarchies may not be designed properly in
practice. In one study Dvorak [23] found that
subjects were more inconsistent in placing classes
deeper in the inheritance hierarchy when compared
to at higher levels in the hierarchy.

According to Hatton's theory, objects that are
manipulated in short-term memory possessing
inherited properties from objects already encoded in
long-term memory require referencing long-term
memory. However, access to long-term memory
breaks the train of thought and is inherently less
accurate. Therefore, according to this, it is likely
that classes will be more fault-prone if they use
inheritance, and this fault-proneness increases as
the extent of inheritance increases. This is
supported in a recent study. An experimental
investigation found that making changes to a C++
program with inheritance consumed more effort than
a program without inheritance, and the author
attributed this to the subjects finding the inheritance
program more difficult to understand based on
responses to a questionnaire [13]. Another study by
Cartwright and Shepperd [14] found that classes
with inheritance tend to be more fault prone. This
suggests that there is a threshold effect: holding
everything else equal, understandability of classes is
stable when there is no inheritance, but falls if there
is any inheritance. In two further experiments [55]
subjects were given three equivalent Java programs
to make changes to, and the maintenance time was
measured. One of the Java programs was 'flat', one
had an inheritance depth of 3, and one had an
inheritance depth of 5. The results for the first
experiment indicate that the programs with
inheritance depth of 3 took longer to maintain than
the 'flat' program, but the program with inheritance
depth of 5 took as much time as the 'flat' program.
The authors attribute this to the fact that the amount
of changes required to complete the maintenance
task for the deepest inheritance program was
smaller. The results for a second task in the first
experiment and the results of the second experiment
indicate that it took longer to maintain the programs

with inheritance. This was attributed to the need to
trace call sequences up the inheritance hierarchy in
order to understand what a class is doing.

It is clear that the above studies indicate that any
inheritance reduces the understandability of a class.
Lorenz and Kidd [41], based on their experiences
with Smalltalk and C++ projects, recommended an
inheritance nesting level threshold of 6, indicating
that some inheritance is not detrimental.

Exactly the opposite conclusions were obtained
from another study. In [21] the authors conducted a
series of classroom experiments comparing the time
to perform maintenance tasks on a 'flat' C++
program and a program with three levels of
inheritance. The result was a significant reduction in
maintenance effort for the inheritance program. An
internal replication by the same authors found the
results to be in the same direction, albeit the p-value
was larger. This suggests an inverse threshold
effect for inheritance depth.

Clearly, the above studies suggest that there is
some form of threshold effect. Although the exact
value of the threshold, and even its direction, are
unclear.

2.1.3 Coupling Thresholds

The object-oriented strategies of limiting a class'
responsibility and reusing it in multiple contexts
results in a profusion of small classes in object-
oriented systems [57]. For instance, Chidamber and
Kemerer [15] found in two systems studied? that
most classes tended to have a small number of
methods (0-10), suggesting that most classes are
relatively simple in their construction, providing
specific abstraction and functionality. Another study
of three systems performed at Bellcore® found that
half or more of the methods are fewer than four
Smalltalk lines or two C++ statements, suggesting
that the classes consist of small methods [57].
Many small classes means that there will be many
interactions amongst the classes. This is believed
to increase the complexity of the program. Wilde et
al.'s [67] conclusions based on an interview-based
study of two object-oriented systems at Bellcore
implemented in C++ and an investigation of a PC

4 One system was developed in C++, and the other in
Smalltalk.

5 The study consisted of analyzing C++ and Smalltalk
systems and interviewing the developers for two of them.
For a C++ system, method size was measured as the
number of executable statements, and for Smalltalk size
was measured by uncommented nonblank lines of code.



Smalltalk environment, all in different application
domains, are concordant with this finding, in that
programmers have to understand a method's
context of use by tracing back through the chain of
calls that reach it, and tracing the chain of methods
it uses. When there are many interactions, this
exacerbates the understandability problem.

Hatton's theory states when there is a diffusion of
functionality, then an object in short-term memory
may be referencing many objects in long-term
memory. This requires retrieval (and pattern-
matching in the case of polymorphism) of many
other objects in long-term memory. Hence, this
leads to comprehension difficulties, and according to
Figure 1, greater fault-proneness. Therefore, one
can argue that when the interacting objects overflow
short-term memory, this will lead to an increase in
fault-proneness.

2.2 Measures Studied

Below we provide a summary of the CK object-
oriented measures that we study. We explicitly
exclude the cohesion measure, known as LCOM,
since there is no a priori reason, based on the
theory above, to believe that it would exhibit a
threshold effect.

2.2.1 WMC

This is the Weighted Methods per Class measure
[15], and can be classified as a traditional
complexity measure. It is a count of the methods in
a class. The developers of this measure leave the
weighting scheme as an implementation decision
[15]. We weight it using cyclomatic complexity as
did [40]. However, other authors did not adopt a
weighting scheme [1][53]. Methods from ancestor
classes are not counted and neither are "friends" in
C++. This is similar to the approach taken in, for
example, [1][16]. To be precise, WMC was counted
after preprocessing to avoid undercounts due to
macros [18].6 Based on their experiences with
object-oriented projects at NASA GSFC, Rosenberg
et al. [47] define a WMC threshold of 100.

6 Note that macros embodied in #ifdef's are used to
customize the implementation to a particular platform.
Therefore, the method is defined at design time but its
implementation is conditional on environment variables.
Not counting it, as suggested in [16], would undercount
methods known at design time.

2.2.2 DIT

The Depth of Inheritance Tree [15] measure is
defined as the length of the longest path from the
class to the root in the inheritance hierarchy. It is
stated that as one goes further down the class
hierarchy the more complex a class becomes, and
hence more fault-prone.

The studies that present alternative thresholds for
DIT have been presented above in Section 2.1.2.

2.2.3 NOC

This is the Number of Children inheritance measure
[15]. This measure counts the number of classes
which inherit from a particular class (i.e., the number
of classes in the inheritance tree down from a class).

To our knowledge, there have been no specific
thresholds specified for this measure.

2.24 CBO

This is the Coupling Between Object Classes
coupling measure [15]. A class is coupled with
another if methods of one class uses methods or
attributes of the other, or vice versa. In this
definition, uses can mean as a member type,
parameter type, method local variable type or cast.
CBO is the number of other classes to which a class
is coupled. It includes inheritance-based coupling
(i.e., coupling between classes related via
inheritance).

Rosenberg et al. [47] have derived a threshold of 5
for CBO.

2.2.5RFC

This is the Response for a Class coupling measure
[15]. The response set of a class consists of the set
Q of methods of the class, and the set of methods
invoked directly by methods in Q (i.e., the set of
methods that can potentially be executed in
response to a message received by that class).
RFC is the number of methods in the response set
of the class.

Rosenberg et al. [47] derived a threshold of 100 for
RFC.

2.3 Summary

The above exposition has presented the existing
theoretical basis for threshold effects for object-
oriented measures, and the evidence that supports
it. We have also presented the CK measures that



we evaluate in the current study, as well as the
thresholds that have been derived in the literature
for them. In some cases, such as DIT, there are
multiple conflicting thresholds.

The remainder of this paper presents a replicated
study of thresholds for the CK measures. To our
knowledge, this is the first attempt to empirically
validate the above cognitive theory for the CK
measures, and the first attempt to derive thresholds
based on a systematic empirical methodology.

3 Research Method

3.1 Measurement

3.1.1 Object-Oriented Measures

The object-oriented measures described above
were collected using a commercial code analyzer.
In order to test for threshold effects, we also need to
control for the potential confounding effect of size
[24]. The size measure used was SLOC.

3.1.2 Fault Measurement

In the context of building quantitative models of
software faults, it has been argued that considering
faults causing field failures is a more important
question to address than faults found during testing
[6]. In fact, it has been argued that it is the ultimate
aim of quality modeling to identify post-release fault-
proneness [28]. In at least one study it was found
that pre-release fault-proneness is not a good
surrogate measure for post-release fault-proneness,
the reason posited being that pre-release fault-
proneness is a function of testing effort [29].

Therefore, faults counted for all the systems that
we studied were due to field failures occuring during
actual usage. For each class we characterized it as
either faulty or not faulty. A faulty class had at least
one fault detected during field operation. Distinct
failures that are traced to the same fault are counted
as a single fault.

3.2 Data Sources

Our study was performed on two C++ applications,
that are described below.

3.2.1 C++ System 1

This is a telecommunications system developed in
C++, and has been in operation for approximately
seven years. This system has been deployed

around the world in multiple sites. In total six
different developers had worked on its development
and evolution. It consists of 85 different classes that
we analyzed.

Since the system has been evolving in functionality
over the years, we selected one version for analysis
where reliable fault data could be obtained.

Fault data was collected from the configuration
management system. This documented the reason
for each change made to the source code, and
hence it was easy to identify which changes were
due to faults. We focused on faults that were due to
failures reported from the field. In total, 31 classes
had one or more fault in them that was attributed to
a field failure.

3.2.2 C++ System 2

This data set comes from a telecommunications
framework written in C++ [49]. The framework
implements many core design patterns for
concurrent communication software. The
communication software tasks provided by this
framework include event demultiplexing and event
handler dispatching, signal handling, service
initialization, interprocess communication, shared
memory management, message routing, dynamic
(re)configuration of distributed services, and
concurrent execution and synchronization. The
framework has been used in applications such as
electronic medical imaging systems, configurable
telecommunications systems, high-performance
real-time CORBA, and web servers. Examples of its
application include in the Motorola Iridium global
personal communications system [51] and in
network monitoring applications for
telecommunications switches at Ericsson [50]. A
total of 174 classes from the framework that were
being reused in the development of commercial
switching software constitute the system that we
study. A total of 14 different programmers were
involved in the development of this set of classes.

For this product, we obtained data on the faults
found in the framework from actual field usage.
Each fault was due to a unique field failure and
represents a defect in the program that caused the
failure. Failures were reported by the users of the
framework. The developers of the framework
documented the reasons for each delta in the
version control system, and it was from this that we
extracted information on whether a class was faulty.
A total of 192 faults were detected in the framework
at the time of writing. These faults occurred in 70



out of 174 classes.

3.3 Analysis Method

The method that we use to perform our analysis is
logistic regression. Logistic regression (LR) is used
to construct models when the dependent variable is
binary, as in our case. The general approach we
use is to construct a LR model with no threshold,
and a LR model with a threshold, and then compare
the two models. This is the standard technique for
evaluating LR models [37].

3.3.1 Logistic Regression

The general form of an LR model is:”

B 1
T 1 4 o BorBisizerpM)

T Eqgn. 1

where T is the probability of a class having a fault,
the size variable is SLOC, and M is the specific
measure that we are evaluating. The 3 parameters
are estimated through the (unconditional)8
maximization of a log-likelihood [37].

In the appendix we present some further
diagnostics that are performed on the LR model,
namely to evaluate the model, to test for collinearity,
and to identify influential observations. Important
methodological points to summarize here are that
we use the likelihood ratio statistic, G, to test the
significance of the overall model, and the R? value
as a measure of goodness of fit. Furthermore, we
compute the condition number, 1, to determine
whether dependencies amongst the independent
variables are affecting the stability of the model.
Please consult the appendix for further details.

3.3.2 Model With A Threshold
A LR model with a threshold can be defined as [54]:

1

"= 1+ o Bo+Brsizer By (4 =0)1 (M=)

Eqgn. 2

where:

7 We also evaluated log and quadratic models in the logit.
The conclusions were the same, and therefore we present
the results for the linear model only.

8 Conditional logistic regression is used when there has been
matching in the design of the study and each matched set is
treated as a stratum in the analysis [7].

4

[WAd
L]

threshold 00 Measure

Figure 2: Relationship between the OO measure M
and the probability of a fault for the threshold and no
threshold models. This is the bivariate relationship
assuming size is kept constant.

0 ifz<0
1 ifz>0

Eqgn. 3

1+(z)={

and T is the measure's threshold value. In this
model we keep size as a continuous variable since a
previous study has indicated that there is no
threshold effect for class size [26]. The difference
between the no threshold and threshold model is
illustrated in Figure 2. For the threshold model the
probability of a fault only starts to increase once the
object-oriented measure is greater than the
threshold value, 1.9

To estimate the threshold value, T, one can
maximize the log-likelihood for the model in Eqgn. 2.
Ulm [54] presents an algorithm for performing this
maximization.

Once a threshold is estimated, it should be
evaluated. This is done by comparing the no-
threshold model with the threshold model. Such a
comparison is, as is typical, done using a likelihood
ratio statistic (for example see [37]). The null
hypothesis being tested is:

Hy:t <M"Y =min M Eqn. 4

where M(1) is the smallest value for the measure M

9 This type of model has been used in epidemiological
studies, for example, to evaluate the threshold of dust
concentrations in coal mines above which miners develop
chronic bronchitic reactions [54]. In fact, the general
approach can be applied to investigate any dose-response
relationship that is postulated to have a threshold.



Std.

Mean |Median Dev. IQR N>0

WMC | 16.27 12 17.44 7 85
DIT 0.81 1 0.85 1 49

NOC 0.56 0 1.33 0 17

CBO 13.2 9 9.19 12 85

RFC 35.2 25 35.18 22 85

Mean |Median [s):?’.. IaR | N>0

wwe | 1527 | & | 1075 17 | 150
oIt | 045 | o | o052 | 1 76
Noc 0034 | o |o0212] o 5
cBo |oes7 | o | 1160 1 64

SLOC | 436 280 492 244 85

RFC | 12.87 8 15.91 11 159

Table 1: Descriptive statistics for the measures
extracted from C++ System 1.

in the data set. If this null hypothesis is not rejected
then it means that the threshold is equal to or below
the minimal value. In the latter case, this is exactly
like saying that the threshold model is the same as
the no-threshold model. In the former case, the
threshold model will be very similar to the no-
threshold model since only a small proportion of the
observations will have the minimal value. Hence
one can conclude that there is no threshold.

The likelihood ratio statistic is computed as
2(li(H4)-1i(Hg)) , where lI(.) is the log-likelihood for
the given model. This can be compared to a chi-
square distribution with 1 degree of freedom. We
use an alpha level of 0.05. Ulm [54] has performed a
Monte Carlo simulation to evaluate this test and
subsequently recommended its use.

It should be noted that if the estimated value for T
is equal or close to M(N) (the largest M value in the
data set), this would mean that most of the
observations in the data set would have a value of
zero, making the estimated model parameters
unstable. In such a case, we conclude that no
threshold effect was found for this data set. Ideally,
if a threshold exists then it should not be too close to
the minimum or maximum values of the M measure
in the data set.

4 Results

4.1 Descriptive Statistics

The descriptive statistics for the object-oriented
measures and the SLOC measure are presented in
Table 1 and Table 2. These include traditional
summaries such as the mean and standard
deviation. However, these summaries can be easily

SLOC | 64.34 | 415 | 61.33 | 56.75 174

Table 2: Descriptive statistics for the measures
extracted from C++ System 2.

exaggerated by a single or a small number of
observations. More robust analogs to these are the
median and the inter-quartile range (IQR). The final
column gives the number of observations that do not
have zero values.

The first noticeable thing from these tables is that
inheritance tends to run low in both of these
systems. The NOC measure for System 2 has only
five observations that are non-zero. Therefore we
will not consider this variable further as it is not
possible to build models when there is such little
variation.

4.2 Testing For Threshold Effects

The results for the threshold models for the two
systems, and the results of the comparison of the
threshold and no-threshold models are shown in
Table 3 and Table 4. We do not present the details
of the no-threshold models since this type of
validation has been reported upon elsewhere
[24][25], and is not the focus of the current study.

All the threshold models have a low condition
number (below the traditional threshold of 30),
hence we do not consider collinearity a threat. As
expected, the R2 values run small. Counter to what
one may expect, however, some of the regression
coefficients are negative (e.g., for DIT for System 1,
and DIT, WMC and RFC for System 2). However,
these values are only different from zero by chance
(i.e., if the true population value was zero, you would
get a value this far negative quite frequently due to
sampling variability).

For System 1, the results make clear that the CBO
threshold model has a statistically significant
parameter. However, the threshold model is not




G B Model
Metric I R2 n 2 Threshold | Comparison
(p-value) (p-value) p-value
9.17 0.0946
WMC (0.0102) 0.085 4.946 (0.173) 11 0.72
12.21 -7.498
DIT (0.0022) 0.109 2.87 (0.0918) 2 0.22
12.39 0.61
NOC (0.002) 0.111 3.08 (0.0821) 2 0.602
33.64 0.1848
CBO (<0.0001) 0.301 4.71 (<0.0001) 1 -
11.98 0.0249
RFC (0.0025) 0.107 4.5 (0.105) 27 0.835

Table 3: Results for the threshold model for C++ System 1 and the comparison of the threshold and no-
threshold models.

G B Model
Metric | R2 n 2 Threshold | Comparison
(p-value) (p-value) p-value
15.19 -0.03114
WMC (0.0005) 0.0647 4.521 (0.2042) 31 0.244
15.28 -6.636
DIT (0.0005) 0.065 2.87 (0.1919) 1 0.27
14.32 5.5069
CBO (0.0008) 0.061 (0.3886) 8 0.393
16.15 -0.0532
RFC (0.0003) 0.0697 (0.167) 25 0.2288

Table 4: Results for the threshold model for C++ System 2 and the comparison of the threshold and no-
threshold models.

different from the no-threshold model (the last
column in the tables shows the p-value for the
comparison of the models). In fact for none of the
measures was there a difference between the
threshold and no-threshold models. The same
conclusion can be drawn for System 2: none of the
threshold models are different from the no-threshold
models.

For the DIT measure, two different thresholds were
identified for the two systems, although when we
tested the null hypothesis of the threshold being
equal to or less than the minimal value, it could not
be rejected. The minimal value of DIT is zero, i.e.,
no inheritance. Therefore, this result is somewhat
consistent with some of the literature mentioned
earlier in that the threshold is at a DIT of zero rather
than a DIT greater than zero.

Based on these results, we would conclude that
the no-threshold models, which are simpler, are
prefered. The addition of thresholds brings no new

information.

4.3 Discussion

The results that we have presented above indicate
that there is no threshold effect for a subset of the
CK object-oriented measures. This means that if
there is a relationship between the measure and
fault-proneness, then it is a continuous one. This
also means that the cognitive theory that has been
postulated does not receive any support from this
study, at least for object-oriented software. There is
no stage on the studied CK measures where the
probability of a fault changes from being steady to
steadily increasing, as shown in Figure 2.

We do not claim that the existing object-oriented
thresholds that have been derived from experential
knowledge, such as those of Lorenz and Kidd [41]
and Rosenberg et al. [47], are of no practical utility
in light of our findings. Even if there is a continuous



; >

threshold 00 Measure

U
’
’
r
’
1
1
]
1
1
I
J
7
’

I
U
4
4
4

o= '
threshold 00 Measure

Figure 3: Different types of thresholds.

(i.e., no threshold) relationship between these
measures and fault-proneness as we have found, if
you draw a line at a high value of a measure and
call this a threshold, classes that are above the
threshold will still be the most fault-prone. This is
illustrated in the left panel of Figure 3. Therefore, for
the purpose of identifying the most fault-prone
classes, such thresholds will likely work. But it will
be noted that classes with values below the
threshold can still mean high fault-proneness, just
not the highest.

Had a threshold effect been identified, then
classes with values below the threshold represent a
"safe" region whereby designers deliberately
restricting their classes within this region can have
some assurance that the classes will have,
everything else being equal, minimal fault-
proneness. This is illustrated in the right panel of
Figure 3.

4.4 Limitations

It is plausible that the two systems we studied had
values on the object-oriented measures that were
systematically larger than a true threshold, and
hence we did not identify any threshold effects even
though they exist. While the strength of this
argument is diluted because it would have to be true
for both systems developed by different teams in
different countries, it cannot be discounted without
further studies.

In our study we utilized a specific threshold model.
With no prior work, this seems like a reasonable
threshold model to use since it captures the
theoretical claims made for threshold effects.
However, We encourage other researchers to
critique and improve this threshold model. Perhaps
with an improved model of a threshold effect,

thresholds will be identified. Therefore, while our
results are clear, we do not claim that this is the last
word on thresholds for object-oriented software.
Rather, we hope this study will catalyze interest in
object-oriented thresholds.

5 Conclusions

In a number of articles, Hatton [33][34] has posited a
cognitive theory that suggests a threshold effect for
many software product measures. His theory has
also been extended to object-oriented software.
Independently of this theory, a number of
researchers have derived their own object-oriented
measure thresholds based on their experience. The
primary purpose of the study reported here was to
test this theory empirically. We did so on two C++
telecommunications systems using a subset of the
CK measures [15]. Our dependent variable was the
incidence of faults that lead to field failures (fault-
proneness). Our results indicated that there is no
threshold effect. This was consistent across the two
systems and for all the measures. While we do not
claim that our results discount the threshold effects
theory, the evidence is compelling against it.

The implications of these findings are twofold:

» Pracitioners deriving or using CK measure
thresholds should note that classes below
the thresholds are likely to still have a high
fault-proneness, although perhaps not the
highest fault-proneness.

+ Researchers validating object-oriented
measures should continue to model the
relationship between object-oriented
measures, at least for the CK measures,
and fault-proneness using continuous
assumptions (rather than threshold
assumptions).



In closing, it is necessary to recognize that the
formulation of theories is important for a discipline.
The theories explain phenomena that we observe
(i.e., they provide the mechanism). Knowledge of
mechanisms can potentially lead to rapid advances
in the field. Given the dearth of prior theories in
software engineering, it is a brave act to articulate a
theory and put it out for criticism and empirical test.
Some of these theories will not survive, but others
will. We therefore need to continuously propose
theories, explanations, and empirically test them.

Acknowledgements

We wish to thank Anatol Kark for his comments on
an earlier version of this paper.

Appendix A: Analysis Details

In this appendix we present further details on the
analysis that we performed to address model
diagnosis and hypothesis testing.

A.1 Diagnosing Collinearity

Collinearity is traditionally seen as being concerned
with dependencies amongst independent variables.
The models that we build in our study all involve size
and an object-oriented measure. It is known that
collinearities can exist between size and many
object-oriented measures [24], and between the
independent variables and the intercept [52].

Previous studies have shown that outliers can
induce collinearities in regression models [42][48].
But also, it is known that collinearities may mask
influential observations [2]. This has lead some
authors to recommend addressing potential
collinearity problems as a first step in the analysis
[2], and this is the sequence that we follow.

Belsley et al. [2] propose the condition number as
a collinearity diagnostic for the case of ordinary least
squares regression. First, let fax be a vector of the
parameter estimates, and X is a nx(k+1) matrix of
the xij raw data, with i=1...n and j=1...k , where n is
the number of observations and k is the number of
independent variables. Here, the X matrix has a
column of ones to account for the fact that the
intercept is included in the models. The condition
number can be obtained from the eigenvalues of the
XTX matrix as follows:

n= Fmax Eqgn. 5

lu' min

where the W's are the eigenvalues. Based on a
number of experiments, Belsley et al. suggest that a
condition number greater than 30 indicates mild to
severe collinearity.

Belsley et al. emphasize that in the case where an
intercept is included in the model, the independent
variables should not be centered since this can
mask the role of the constant in any near
dependencies. Furthermore, the matrix must be
column equilibrated, that is, each column should be
scaled for equal Euclidean length. Without this, the
collinearity diagnostic produces arbitrary results.
Column equilibration is achieved by scaling each
column in X, Xj, by its norm [3]:

X, /x|

This diagnostic has been extended specifically to
the case of LR models [22][56] by capitalizing on the
analogy between the independent variable cross-
product matrix in least-squares regression to the
information matrix in maximum likelihood estimation,
and therefore it would certainly be parsimonious to
use the latter.

The information matrix in the case of LR models is

[37]:
i6)-x7Vx

where V is the diagonal matrix consisting of

A

#,(-#,) where 7, is the probability estimate

Eqgn. 6

Eqn. 7

from the LR model for observation i. The general
approach for non-least-squares models is described
by Belsley [4]. In this case, the same interpretive
guidelines as for the traditional condition number are
used [56].

A.2 Hypothesis Testing

The next task in evaluating the LR model is to
determine whether the regression parameter is
different from zero, i.e., test Hy: B4=P2=0. This can
be achieved by using the likelihood ratio G statistic
[37]. One first determines the log-likelihood for the
model with the constant term only, and denote this I
for the 'null' model. Then the log-likelihood for the
full model with size and the object-oriented measure



is determined, and denote this Ig. The G statistic is
given by 2(ls-lg) which has a chi-square distribution
with 2 degrees of freedom. To test the significance
of the individual parameters, we also use a
likelihood ratio statistic, whereby we compare the
models with the variable and without (in this case
the chi-squared statistic has only 1 degree of
freedom).

In previous studies with object-oriented measures
another descriptive statistic has been used, namely
an R? statistic that is analogous to the multiple
coefficient of determination in least-squares
regression [11]. This is defined as R2=(I0-IS)/IO and
may be interpreted as the proportion of uncertainty
explained by the model. We use a corrected version
of this suggested by Hosmer and Lemeshow [37]. It
should be recalled that this descriptive statistic will in
general have low values compared to what one is
accustomed to in a least-squares regression. In our
study we will use the corrected R? statistic as a
loose indicator of the quality of the LR model.

A.3 Influence Analysis

Influence analysis is performed to identify influential
observations (i.e., ones that have a large influence
on the LR model). This can be achieved through
deletion diagnostics. For a data set with
observations, estimated coefficients are recomputed
times, each time deleting exactly one of the
observations from the model fitting process.
Pergibon has defined the AP diagnostic [46] to
identify influential groups in logistic regression. The
AP diagnostic is a standardized distance between
the parameter estimates when a group of
observations with the same x; values is included and
when they are not included in the model.

We use the AP diagnostic in our study to identify
influential groups of observations. For groups that
are deemed influential we investigate this to
determine if we can identify substantive reasons for
them being overly influential. In all cases in our
study where a large AP was detected, its removal,
while affecting the estimated coefficients, did not
alter our conclusions.

References

[11 V. Basili, L. Briand and W. Melo: "A Validation of
Object-Oriented Design Metrics as Quality
Indicators". In IEEE Transactions on Software
Engineering, 22(10):751-761, 1996.

[2] D. Belsley, E. Kuh, and R. Welsch: Regression
Diagnostics: Identifying Influential Data and

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Sources of Collinearity. John Wiley and Sons,
1980.

D. Belsley: "A Guide to Using the Collinearity
Diagnostics". In Computer Science in Economics
and Management, 4:33-50, 1991.

D. Belsley: Conditioning Diagnostics: Collinearity
and Weak Data in Regression. John Wiley and
Sons, 1991.

S Benlarbi and W. Melo: "Polymorphism
Measures for Early Risk Prediction". In
Proceedings of the 21st International Conference
on Software Engineering, pages 334-344, 1999.

A. Binkley and S. Schach: "Validation of the
Coupling Dependency Metric as a Predictor of
Run-Time Fauilures and Maintenance Measures".
In Proceedings of the 20th International
Conference on Software Engineering, pages 452-
455, 1998.

N. Breslow and N. Day: Statistical Methods in
Cancer Research - Volume 1 - The Analysis of
Case Control Studies, IARC, 1980.

L. Briand, P. Devanbu, and W. Melo: "An
Investigation into Coupling Measures for C++". In
Proceedings of the 19th International Conference
on Software Engineering, 1997.

L. Briand, J. Wuest, S. lkonomovski, and H.
Lounis: "A Comprehensive Investigation of
Quality Factors in Object-Oriented Designs: An
Industrial Case Study". International Software
Engineering Research Network technical report
ISERN-98-29, 1998.

L. Briand, E. Arisholm, S. Counsell, F. Houdek,
and P. Thevenod-Fosse: "Empirical Studies of
Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Direction".
In Empirical Software Engineering, 4(4):387-404,
1999.

L. Briand, J. Wuest, J. Daly, and V. Porter:
"Exploring the Relationships Between Design
Measures and Software Quality in Object
Oriented Systems". In Journal of Systems and
Software, 51:245-273, 2000.

F. Brito e Abreu and W. Melo: "Evaluating the
Impact of Object-Oriented Design on Software
Quality". In Proceedings of the 3rd International
Software Metrics Symposium, pages 90-99, 1996.

M. Cartwright: "An Empirical View of Inheritance”.
In Information and Software Technology, 40:795-
799, 1998.

M. Cartwright and M. Shepperd: "An Empirical
Investigation of an Object-Oriented Software
System". To appear in IEEE Transactions on
Software Engineering.

S. Chidamber and C. Kemerer: "A Metrics Suite
for Object-Oriented Design". In IEEE
Transactions on Software Engineering, 20(6):476-
493, 1994.

S. Chidamber and C. Kemerer: "Authors' Reply".
In IEEE Transactions on Software Engineering,
21(3):265, 1995.

S. Chidamber, D. Darcy, and C. Kemerer:
"Managerial Use of Metrics for Object Oriented



(18]

[19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

[30]

[31]

Software: An Exploratory Analysis". In /[EEE
Transactions on Software Engineering, 24(8):629-
639, 1998.

N. Churcher and M. Shepperd: "Comments on 'A
Metrics Suite for Object Oriented Design". In
IEEE Transactions on Software Engineering,
21(3):263-265, 1995.

J. Daly, M. Wood, A. Brooks, J. Miller, and M.
Roper: "Structured Interviews on the Object-
Oriented Paradigm". Research Report EFoCS-7-
95, Department of Computer Science, University
of Strathclyde, 1995.

J. Daly, J. Miller, A. Brooks, M. Roper, and M.
Wood: "Issues on the Object-Oriented Paradigm:
A Questionnaire Survey". Research Report
EFoCS-8-95, Department of Computer Science,
University of Strathclyde, 1995.

J. Daly, A. Brooks, J. Miller, M. Roper, and M.
Wood: "Evaluating Inheritance Depth on the
Maintainability of Object-Oriented Software". In
Empirical Software Engineering, 1(2):109-132,
1996.

C. Davies, J. Hyde, S. Bangdiwala, and J.
Nelson: "An Example of Dependencies Among
Variables in a Conditional Logistic Regression”. In
S. Moolgavkar and R. Prentice (eds.): Modern
Statistical Methods in Chronic Disease
Edpidemiology. John Wiley and Sons, 1986.

J. Dvorak: "Conceptual Entropy and Its Effect on
Class Hierarchies". In IEEE Computer, pages 59-
63, 1994.

K. El Emam, S. Benlarbi, N. Goel, and S. Rai:
"The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics". To appear in
IEEE Transactions on Software Engineering,
2000.

K. El Emam, S. Benlarbi, N. Goel, and S. Rai: "A
Validation of Object-Oriented Metrics". Submitted
for publication, 1999.

K. El Emam, S. Benlarbi, N. Goel, W. Melo, H.
Lounis, and S. Rai: "The Optimal Class Size for
Object-Oriented Software: A Replicated Study".
Submitted for publication, 2000.

N. Fenton and M. Neil: "A Critique of Software
Defect Prediction Models". In IEEE Transactions
on Software Engineering, 25(5):676-689, 1999.

N. Fenton and M. Neil: "Software Metrics:
Successes, Failures, and New Directions". In
Journal of Systems and Software, 47:149-157,
1999.

N. Fenton and N. Ohlsson: "Quantitative Analysis
of Faults and Failures in a Complex Software
System". To appear in IEEE Transactions on
Software Engineering, 2000.

V. French: "Establishing Software Metrics
Thresholds". In Proceedings of the 9th
International Workshop on  Software
Measurement, 1999 (available from
http://www.Irgl.ugam.ca/iwsm99/index2.html ).

R. Harrison, L. Samaraweera, M. Dobie, and P.
Lewis: "An Evaluation of Code Metrics for Object-

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Oriented Programs". In Information and Software
Technology, 38:443-450, 1996.

R. Harrison, S. Counsell, and R. Nithi: "Coupling
Metrics for Object Oriented Design". In
Proceedings of the 5th International Symposium
on Software Metrics, pages 150-157, 1998.

L. Hatton: "Re-examining the Fault Density -
Component Size Connection". In IEEE Software,
pages 89-97, 1997.

L. Hatton: "Does OO Sync with How We Think ?"
In IEEE Software, pages 46-54, May/June 1998.

B. Henderson-Sellers: Object-Oriented Metrics:
Measures of Complexity. Prentice-Hall, 1996.

E. Hilgard, R. Atkinson, and R. Atkinson:
Introduction to Psychology. Harcourt Brace
Jovanovich, 1971.

D. Hosmer and S. Lemeshow: Applied Logistic
Regression. John Wiley & Sons, 1989.

M. Leijter, S. Meyers, and S. Reiss: "Support for
Maintaining Object-Oriented Programs". In IEEE
Transactions on Software Engineering,
18(12):1045-1052, 1992.

J. Lewis and S. Henry: "A Methodology for
Integrating Maintainability Using Software
Metrics". In Proceedings of the International
ggn{%rSeé?ce on Software Maintenance, pages 32-

W. Li and S. Henry: "Object-Oriented Metrics that
Predict Maintainability". In Journal of Systems
and Software, 23:111-122, 1993.

M. Lorenz and J. Kidd: Object-Oriented Software
Metrics. Prentice-Hall, 1994.

R. Mason and R. Gunst: "Outlier-Induced
Collinearities". In Technometrics, 27:401-407,
1985.

G. Miller: "The Magical Number 7 Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information”. In Psychological Review, 63:81-97,
1957.

V. Misic and D. Tesic: "Estimation of Effort and
Complexity: An Object-oriented Case Study". In
Journal of Systems and Software, 41:133-143,
1998.

P. Nesi and T. Querci: "Effort Estimation and
Prediction of Object-Oriented Systems". In
Journal of Systems and Software, 42:89-102,
1998.

D. Pergibon: "Logistic Regression Diagnostics".
In The Annals of Statistics, 9(4):705-724, 1981.

L. Rosenberg, R. Stapko, and A. Gallo: "Object-
Oriented Metrics for Reliability". Presentation at
IEEE International Symposium on Software
Metrics, 1999.

R. Schaefer: "Alternative Estimators in Logistic
Regression when the Data are Collinear". In The
Journal of Statistical Computation and Simulation,
25:75-91, 1986.

D. Schmidt: "Using Design Patterns to Develop
Reusable Object-Oriented Communication
Software". In Communications of the ACM,
38(10):65-74, 1995.



[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

D. Schmidt and P. Stephenson: "Experiences
Using Design Patterns to Evolve System
Software Across Diverse OS Platforms". In
Proceedings of the 9th European Conference on
Object Oriented Programming, 1995.

D. Schmidt: "A System of Reusable Design
Patterns for Communication Software". In S.
Berzuk (ed.): The Theory and Practice of Object
Systems, Wiley, 1995.

S. Simon and J. Lesage: "The Impact of
Collinearity Involving the Intercept Term on the
Numerical Accuracy of Regression". In Computer
Science in Economics and Management, 1:137-
152, 1988.

M-H. Tang, M-H. Kao, and M-H. Chen: "An
Empirical Study on Object Oriented Metrics". In
Proceedings of the Sixth International Software
Metrics Symposium, pages 242-249, 1999.

K. Ulm: "A Statistical Method for Assessing A
Threshold in Epidemiological Studies". In
Statistics in Medicine, 10:341-349, 1991.

B. Unger and L. Prechelt: "The Impact of
Inheritance Depth on Maintenance Tasks -
Detailed Description and Evaluation of Two
Experiment Replications". Technical Report
19/1998, Fakultat fur Informatik, Universitaet
Karlsruhe, 1998.

Y. Wax: "Collinearity Diagnosis for Relative Risk
Regression Analysis: An Application to
Assessment of Diet-Cancer Relationship in
Epidemiological Studies". In Statistics in
Medicine, 11:1273-1287, 1992.

N. Wilde, P. Matthews and R. Huitt: "Maintaining
Object-Oriented Software". In /[EEE Software,
pages 75-80, Januray 1993.



