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Abstract

Recent evidence indicates that the UML (Unified Modeling Language) is the most preferred and
widely used modeling technique for object-oriented analysis and design. With UML becoming so
popular, there is a need to have good quality assurance techniques for projects using it.  Our
focus in this study is on the inspections of UML design documents. The basic premise of software
inspections is that they detect and remove defects before they propagate to subsequent
development phases, where their detection and correction costs escalate. However, the
performance of inspections can vary considerably, making it important to optimize inspections.
One approach for optimizing inspections is by controlling the inspection team size. This paper
presents an empirical evaluation of the optimal team size for UML design inspections. Our results
show that there is no single optimal team size. Optimal team size in fact depends on various
conditions such as the cost of defect detection late in the process, and inspection meeting
duration. This paper quantifies these factors and proposes optimal team sizes under various
conditions. Our results also indicate strongly that contemporary suggestions of only two-person
inspection teams are far from optimal.

1 Introduction

Software inspections have emerged as one of the most effective and efficient methods for
software quality improvement.  It has been claimed that inspections can lead to the detection and
correction of anywhere between 50% and 90% of the defects in a software artifact (Fagan, 1986;
Gilb and Graham, 1993). Inspections not only contribute towards software quality improvement,
but also can lead to budget and time benefits through early defect detection.  Since inspections
can be performed at the end of each development phase and since the defects are typically found
close to the point where they are introduced, rework5 costs can be reduced considerably.  For
example, a Monte Carlo simulation using parameters collected from the literature has indicated
that on average, the implementation of code inspections reduces life cycle defect detection costs
by 39% on average, and that the implementation of design inspections reduces life cycle defect
detection costs by 44% on average (Briand et al., 1998b) 6.

                                                          
1 School of Computer Science McGill University, 3480 University Street, McConnell Engineering Building, Montreal,
Quebec, Canada H3A 2A7. sboodo@cs.mcgill.ca
2 National Research Council of Canada, Institute for Information Technology, Building M-50, Montreal Road, Ottawa,
Ontario, Canada K1A OR6. Khaled.El-Emam@nrc.ca
3 Fraunhofer Institute for Experimental Software Engineering Sauerwiesen 6  D-67661 Kaiserslautern Germany.
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4 School of Computer Science McGill University, 3480 University Street, McConnell Engineering Building, Montreal,
Quebec, Canada H3A 2A7. madhavji@cs.mcgill.ca
5 This constitutes the costs associated with correcting defects.
6 These numbers are in comparison with the testing only defect detection life cycle.  So, for example, if you introduce
design inspections to a testing only life cycle, you will save 44% of the testing cost.
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Thus far, research on software inspections in general has focussed primarily on textual
documents resulting from conventional structured development processes, such as functional
requirements documents or functional code modules (Basili et al., 1996; Laitenberger et al.,
2000b; Porter et al., 1995; Porter and Votta, 1998).  The inspection of object-oriented models,
particularly of the graphical form, have so far not been investigated thoroughly. This is worrisome
given that over the past decade object-oriented development methods have gained prominence
in practice.

By far, the most popular object-oriented notation nowadays is UML (Unified Modeling Language).
This is a graphical notation for modeling object-oriented systems. A recent survey eliciting 160
responses found that amongst experienced developers the OMT, Booch, and Jacobson methods
are most familiar, most used and most preferred (Johnson and Hardgrave, 1999).7 These three
methods are the basis for the UML notation (Booch et al., 1999). With UML becoming so popular,
there is a need to have good quality assurance techniques.  Our focus in this paper is on
inspections of UML design documents.

1.1 Inspections of UML Documents

A software inspection usually consists of several activities including planning, defect detection,
defect collection, and defect correction (Laitenberger and DeBaud, 2000).  Inspection planning is
performed by an organizer who schedules all subsequent inspection activities. The defect
detection activity can be performed either by inspectors individually or in a group meeting.
Studies evaluating the performance of groups using idea generation techniques found that group
performance is inhibited due to: production blocking which occurs when only one member can
communicate at once (for instance, group members must constantly listen to others to avoid
missing a contribution, but this makes it difficult to generate ideas at the same time) (Diehl and
Stroebe, 1987; Lamm and Trommsdorff, 1973), evaluation apprehension, which causes group
members to withhold ideas because they fear a negative evaluation of their ideas (Diehl and
Stroebe, 1987; Lamm and Trommsdorff, 1973), and free riding whereby group members rely on
others to accomplish the designated task (which may happen if group members perceive their
input as dispensable and less needed for group success and if they must compete with each
other for opportunities to contribute) (Harkins and Petty, 1970). It is therefore not totally surprising
that recent software engineering empirical findings reveal that the so-called synergy effect of
inspection meetings is rather low in terms of impact on defects detected (Johnson and Tjahjono,
1998; Land et al., 1997; Votta, 1993). Consequently, we are looking at defect detection as an
individual rather than a group activity. Defect collection, on the other hand, is often performed in a
team meeting (i.e., an inspection meeting) led by an inspection moderator. The aim of this
meeting is to log the defects that are found.

The software engineering community has identified a number of factors that have an impact on
software inspections performance.  For example, the particular  reading technique used can
influence the number of defects found (Basili et al., 1996; Laitenberger et al., 2000b; Porter et al.,
1995; Porter and Votta, 1998), the process of inspections (for example, defect detection meetings
versus no meetings and team size) (Gilb and Graham, 1993; Johnson and Tjahjono, 1998;
Madachy et al., 1993; Porter et al., 1997), and explicit criteria for deciding when to stop
inspections (Adams, 1999). Our focus in this paper is on inspection team size.

1.2 Optimal UML Inspection Team Size
Our goal in this paper is to find an optimal team size, if one exists.  It is clear that the larger the
inspection team size, the more costly an inspection will be.  However, it is also the case that the
more inspectors who read a given artifact, the more likely it is that more defects will be detected.
Therefore, there is a tradeoff between cost and the number of defects detected. It then becomes

                                                          
7 The percentage of developers who used these methods were as follows :  OMT (Analysis: 36%,  Design: 39%),  Booch
(Analysis: 23 %, Design: 30%), Jacobson  (Analysis: 8%, Design: 2%), and all the others (Analysis : 30%, Design: 25%).
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important to identify the minimal team size that will maximize the number of defects found. Votta
(Votta, 1993) notes that determining the optimal team size for inspections is an important
contemporary research issue, and Sauer et al. (Sauer et al., 2000) have recently called for more
research on this topic.

Previous work in this area, for non-object-oriented inspections, produced inconsistent results with
recommended team sizes ranging from 2 to 12 (Bisant and Lyle, 1989; Bottger and Yetton, 1988;
Buck, 1981; Eick et al., 1992; Fagan, 1976; Gilb and Graham, 1993; Grady, 1992; Lau et al.,
1996; Madachy et al., 1993; Porter et al., 1996; Porter et al., 1997; Strauss and Ebeneau, 1994;
Weller, 1993).  Furthermore, none of these studies focused on UML design inspections.

We performed a simulation using data collected from an empirical study with 16 professional
designers whereby they inspected a design document in the UML notation.  All used the same
reading technique and followed the same process.  Using the data collected from this study, we
then performed an extensive simulation of ‘virtual teams8’ of sizes ranging from 2 inspectors to 15
inspectors.  We simulated inspections without team meetings, and with team meetings ranging in
duration from 1 hour to 2 hours (the range generally recommended in the literature).  Our criterion
measure was the efficiency of the inspections.  This is defined as the percentage savings in
defect detection costs from performing the inspections.  The advantage of this measure is that it
takes into account the costs of inspections, and the savings that accrue from finding defects
earlier (during design) as opposed to during code inspections and testing.   We also factored in
the effort to fix a defect after the inspection.

Our results indicate that there is no single optimal team size. In fact, the optimal team size
depends first on the relative costs of finding (design) defects later in the life cycle. Therefore, say,
if the cost of testing is prohibitive, then a very large team size is likely to be optimal as it is worth
expending the extra effort to find that additional defect. On the other hand, if the cost of testing is
minor, then a smaller optimal team size is recommended. The optimal team size also depends on
whether a team meeting is performed, and the duration of that meeting. If meetings are held and
the longer the duration of the meetings, then the smaller the optimal team size.  This is because
meetings increase the overall inspection effort, and hence reduce inspection efficiency.

At an abstract level, these results confirm what one would expect intuitively. However, we have
also quantified these effects and make initial recommendations for optimal team size under the
different conditions. Furthermore, we found that the sometimes suggested inspection team size of
two (Bisant and Lyle, 1989; Porter et al., 1997) is far from optimal in the case of UML inspections.
In fact, even under modest assumptions about the relative cost of design inspections and post-
design defect detection activities, the optimal team size is considerably large.

The paper is structured as follows. In the following section we review the literature on inspection
team size. We also describe why only considering the number (or proportion, or defect density) of
defects found when evaluating inspection team size can give misleading results. Section 3
presents our research method in detail, and our results and their interpretation are given in
Section 4. We conclude the paper in Section 5 with a summary and directions for future work.

2 Background

This section presents a review of the literature on inspection team size, and discusses the
problems with one obvious approach for empirically evaluating optimal inspection team. The
identified problems motivate the approach that we followed in our study.

                                                          
8 As noted in the text, we consider that defect detection occurs in the preparation phase. A “virtual team” is created by
considering all combinations of inspectors of a certain size. For example, there are 120 combinations of 2-inspector teams
from a pool of 16 potential inspectors (16C2).
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2.1 Current Recommendations on Optimal Team Size
There exists a plethora of recommendations about the optimal team size for software inspections.
Some of these recommendations are based on systematic empirical study, while others are
based on personal experiences of their authors.  This literature, however, gives conflicting
accounts of what is indeed the optimal team size.

Bisant & Lyle (Bisant and Lyle, 1989) found an improvement in individual productivity as a result
of 2-person inspections.  They also mentioned that this 2-person method can be applied to those
environments where larger team resources are not available.  Porter et al. (Porter et al., 1997)
reported that inspections are usually carried out by a team of 4 to 6 inspectors.  They also
conducted an experiment and they found out that a decrease in the number of inspectors from 4
to 2 would result in a decrease in effort without any reduction in effectiveness or interval, but for
1-inspector teams the effectiveness was poorer. Bottger et al. (Bottger and Yetton, 1988) stated
that behavioral research found expert pairs perform as well as larger groups.

The recommended size for software inspections defined by IEEE STD 1028-1988 is 3-6 persons
(STD, 1989).  Ackerman et al. (Ackerman et al., 1989) reported that inspections are conducted by
at least 3 people, one of whom is the moderator who is responsible for the effectiveness of the
examination. Lau et al. (Lau et al., 1996) suggested three person inspections. Grady (Grady,
1992) stated an optimum size of 4 to 5 inspectors. Laitenberger and DeBaud (Laitenberger and
DeBaud, 2000) recommended 3 to 4 inspectors.  They stated that there would be a ceiling effect
after which an additional inspector would not necessarily pay off in more defects. Fagan (Fagan,
1976) recommended to keep inspection teams small, that is, 4 people.  However, if there are a
number of (code) interfaces, then the programmers of the code related to those interfaces can be
involved in the inspection.  In a study  at IBM, Buck (Buck, 1981) indicated that there was no
difference in effectiveness between 3, 4, or 5-person inspection teams. Weller (Weller, 1993)
reported that 4-person teams were twice as effective9, and more than twice as efficient10 as 3-
person teams.  However, a 3-person team with a low preparation rate (lines per hour) seemed to
do as well as a 4-person inspection team with a high preparation rate.  He suggested that the
preparation rate and inspectors’ familiarity with the product, not the team size, determined
inspection effectiveness and efficiency.  Yetton and Bottger (Yetton and Bottger, 1983) noted that
behavioral theory showed inspection performance increases for team sizes of three to four.
Beyond four members, there is no performance improvements. Madachy et al. (Madachy et al.,
1993) suggested an optimal size of 4 to 5 people for inspections. Gilb and Graham (Gilb and
Graham, 1993) mentioned a team size of 2 to 3 people for maximum efficiency11, and 4 to 5
people for maximum effectiveness12.  Strauss and Ebeneau (Strauss and Ebeneau, 1994)
suggested a minimum inspection team size of 3, and a maximum of 7.  They also mentioned that
any more persons would tend to reduce the efficiency and effectiveness of the process.

In an experiment at the Jet Propulsion Laboratory, Kelly et al. (Kelly et al., 1992) stated that
inspections are usually carried out by 6 people.  They also recommended larger teams for
requirements and high-level artifacts and smaller teams for code. Briand et al. (Briand et al.,
1999) performed a study of meetings13 in software development. They found that when the
number of participants exceeds 7, the perceived quality of the meeting was low.  Johnson
(Johnson, 1998) notes that there is widespread consensus that the inspection team size should
never exceed 6-9 members. Industrial practice varies even within a single enterprise, for
example, sizes between 4 and 12 are used at AT&T (Eick et al., 1992). Sauer et al. (Sauer et al.,
2000) stated that behavioral theory has found that the relationship between defect detection
performance and review group size is a function of expertise.

                                                          
9 Effectiveness is defined as the defects found by inspection /total number of defects.
10 It is not clear how Weller defined effciency.
11 Efficiency is the major issues per work-hour.
12 Effectiveness is the percentage of total majors found in inspections.
13 This study covered informal technical discussions and project planning meetings, as well as meetings to inspect work
packages.
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Schneider et. al. (Schneider et al., 1992) stated that N inspection teams are more effective than
any single team.  An experiment was carried out by 27 graduate students grouped into 9 teams of
3.  They did individual reviewing and the defects were collected for each team through a meeting.
Then, all the inspection results for all the teams were collated by a single moderator who also
removed duplicate reports. It was found that the 9 teams of 3 persons combined found twice as
many defects as the average found by any single team (78% compared to 35%).

One reason for such a diversity in the recommendations is that different authors define “optimal”
in a different way.  Differing definitions of “efficiency” and “effectiveness” of inspections are used
to highlight the benefits of the various team sizes. For example, Porter et al. (Porter et al., 1997)
defined effectiveness as defect density, which is defects/KNCSL where NCSL is the number of
noncommentary lines of code.  Madachy et al. (Madachy et al., 1993) described effectiveness as
defects found per unit of inspection effort.  According to Gilb et al. (Gilb and Graham, 1993),
effectiveness is the percentage of total major faults or issues found in inspections.  He defined
efficiency as major issues per work-hour.   Fagan (Fagan, 1976) and Buck (Buck, 1981) defined
efficiency as (errors found by an inspection / total number of errors before inspection) x 100.

Another reason for such differences is that some authors like Buck (Buck, 1981) and Fagan
(Fagan, 1976) have used meetings for defect detection, whereas others consider the meeting as
a means for defect collection only.  Furthermore, some studies evaluate the team size for the
meeting only rather than for the whole inspection, such as (Bottger and Yetton, 1988; Briand et
al., 1999; Yetton and Bottger, 1983).

Such a state of affairs is not conducive to making strong recommendations about the optimal
team size in practice. Furthermore, none of the above articles tackle optimal team size for the
inspection of UML designs.

2.2 Inspection Effectiveness and Team Size
An obvious way to identify the optimal team size is to perform an empirical study comparing
teams of different sizes. This comparison can then determine which team size results in more
defects detected, greater defect density (for defects found), or a greater proportion of defects
found out of the total seeded in the inspected artifact (henceforth this will be termed
effectiveness).

Below we demonstrate that all of the above measures of “inspection quality” are uninformative as
a means of evaluating team size.  By definition, the expected number of defects found during an
inspection (Chao et al., 1992) is given by:

( ) ( )



 −−= ∏

=

t

i
ipNDE

1

11 Eqn. 1

where N  is the number of defects in the artifact, ip  is the probability that inspector i  will find a

defect, and t  is the total number of inspectors on the team.  This formulation assumes

independence among inspectors. The ip  probability denotes the long-run probability that an

inspector will find a defect, and its expected value is the average effectiveness of an inspector.

It is clear from the above equation that for any 0>ip  the ( )DE  value will increase as you add

inspectors, and ( ) NDE
t

=
∞→

lim  (the expected number of defects found will equal the actual

number of defects in the artifact as the team size approaches infinity). This means that by
definition, irrespective of the additional inspectors’ capability at finding defects (as long as their
probability of defect detection is greater than zero), the addition of inspectors will result in a
greater expected number of defects.  More inspectors means more defects will be found, on
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average.14,15 Furthermore, the above equation makes clear that the rate at which the ( )DE  value
increases will decrease as more inspectors are added. In addition, if we consider the optimal
team size as that which maximizes the (expected) number of defects found, there is no optimal
team size. The maximum expected number of defects found is reached with a team of size plus
infinity.

We can illustrate this behavior from our data set, as in Figure 1.16  The small squares in the boxes
are the median values of detected defects for different team sizes. First, note that the relationship
is monotonically increasing: adding inspectors increases the number of defects found. Second,
note the diminishing increase in the number of defects found as the number of inspectors
increases.
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Figure 1: Box and whisker plot of unique number of defect against team size from our study.

If one were to conduct an experimental study comparing different team sizes on their
effectiveness, number of defects found, or defect density, then the result will depend on the
                                                          
14 It should be noted that this is a statistical argument. For instance, if a a team of two inspectors finds all the defects in an
artifact, then the addition of more inspectors will not increase the number of defects found. However, over many
inspections, keeping the total number of defects constant, a larger team will find more defects on average.
15 Some studies have documented incidents of process loss in collection meetings (Porter et al., 1997; Porter and Votta,
1998). It is believed that this occurs because inspectors may be talked out of the belief that something is a defect or
because during the meeting the inspectors forget or cannot reconstruct a defect they had found during preparation (Porter
and Votta, 1998). The latter would be more severe in industrial contexts where the delay between defect detection and the
defect collection can be a few weeks. In one study it was found that 4-person teams performed as well as 2-person teams
because there is greater process loss for the larger team (Porter et al., 1997). If there is indeed a relationship between
process loss and team size, then for inspections that include a meeting for defect collection, it is not necessarily true that
more defects will be logged by larger teams. However, in that study (Porter et al., 1997), the authors found that
approximately 80% of the issues identified during preparation were not true defects, hence it is not clear whether this
process loss is due to the removal of false positives and “soft issues” or due to the impact of larger defect collection
meetings.
16 As will be explained later, inspection teams of the various sizes were generated by simulating all combinations of
inspection teams of that size.
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statistical power17 of the test used. One typically draws the conclusion that a given team size
results in higher effectiveness if the difference is statistically significant.  We have demonstrated
above that for any two different team sizes, there will always be a difference.  Therefore, an
experimental study will find a statistically significant difference if the statistical power is large
enough.

To illustrate the point, we performed a Monte Carlo simulation for an experiment comparing team
sizes. We used a two group design, with one group having a team size of two, and the other
group having a team size of four.  We assumed that all the inspectors taking part in the
experiment come from the same population. The population of effectiveness is defined as a Beta
distribution.  The Beta distribution’s parameters were obtained from the observed effectiveness in
our data set (this data set is described later in this paper).  These parameters were Maximum
Likelihood estimates.  The Beta distribution specified the probability of an inspector finding a
defect, i.e., ip .  An example of a Beta distribution is shown in Figure 2.

0

3

0.0 0.3 0.5 0.8 1.0
Probability of Finding a Defect

F
re

q
u

en
cy

Figure 2: A Beta distribution.

Each group in the simulation had k  teams of the requisite (two or four) number of inspectors.18

Inspectors were selected from the Beta distribution randomly, and randomly assigned to the two
groups. Within each group, each inspector was randomly assigned to one of the k  teams.  This
is a simulation of an actual experiment that could be performed.  For each run of the experiment
we used an independent sample t-test19 to test the difference in effectiveness (the proportion of
defects found) between the two groups.  We chose sizes of k  (that is, number of teams) to be 5,
10, and 15.

We repeated the simulated experiment 1000 times, and determined the proportion of times the
two-tailed t-test rejected the null hypothesis of there being no difference (in means) between the
two groups. We know that there is a difference between the two groups because that is true by
definition.  Therefore, the proportion of times that the null hypothesis is rejected gives us an
estimate of the power of the test. The results are summarized in Table 1.

                                                          
17 The statistical power of a test is the probability that the test will correctly lead to the rejection of the null hypothesis.
However, for purposes of our simulation we used a value of 19.

18 The results of the simulation are independent of the number of defects in the artifact, N .

19 A t-test is a test to compare the means of two independent groups.
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No. of Teams in a group (k) Empirical Power Number of Subjects

5 58% (5x4)+(5x2)=30

10 96% (10x4)+(10x2)=60

15 99% (15x4)+(15x2)=90

Table 1: Results of the power analysis.

We can see that if we have five teams in each group, the power of the test is only 58%. This can
be considered rather low. Cohen (Cohen, 1988) recommends a statistical power of 80%.  Thus, if
an experiment with 5 teams in each group was to be performed with professional subjects similar
to ours the likelihood of rejecting the null hypothesis that there is no difference in effectiveness
between a two and a four person inspection team is low.  This would then likely lead to the
conclusion that there is no difference between 2-person and 4-person teams.  However, a larger
experiment with 10 or 15 teams in each group has a very high probability of rejecting the null
hypothesis.  A larger experiment would therefore likely conclude that indeed there is a difference
in effectiveness between 2-person and 4-person teams.

It can be seen from the table that an experiment with 5 teams already requires 30 subjects in
total. An experiment with 10 or 15 teams would require 60 and 90 subjects respectively.  To be
able to perform such a large (by software engineering standards) experiment with professional
subjects is quite unlikely in practice. Indeed, if we were to use another measure, such as the
detected defect density, and assuming that the two groups were inspecting the same (or
equivalent) artifact, then the conclusion of our simulation would be exactly the same (see the
proof of this in the appendix).

Another important factor that will have a non-negligible impact on the results of a team-size
comparative study is the expertise of the inspectors. Expertise is captured by the ip  variable in

Eqn. 1. An inspector i  with high expertise will have a high ip , and one with low expertise will

have a low ip . This effect can be illustrated through an example. In Table 2 we show examples

of 2 and 4 person teams, with the first case the inspectors have low expertise (all ip =0.1) and in

the second case the inspectors have high expertise (all ip =0.9).

ip 0.1
(low expertise)

0.9
(high expertise)

team size ( t ) 2 4 2 4

)D(E 0.19 N 0.34 N 0.99 N 0.9999 N

Table 2: Example illustrating the effect of expertise. Values were calculated according to Eqn. 1.

It is clear from this table that the difference in the expected number of defects found between the
2 and 4 person teams is much larger for the low expertise team, and almost negligible for the high
expertise team. Therefore, an experimental study will have a hard time detecting the high-
expertise difference unless there is a very large number of teams.

We can conclude from the above exposition that:

•  There is no optimal team size when one considers effectiveness as the evaluative
criterion. Experimental studies that investigate this issue will draw a conclusion based
directly on the size of the experiment, with modest changes in the number of teams
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resulting in a high probability of drawing opposite conclusions. This is also true if we
compare the number of defects found or defect density for different team sizes.

•  If we wish to make recommendations about team size for software engineering practice,
then studies evaluating inspection team size ought not be done with non-professionals. It
is expected that results from professionals will be more generalizeable since it is clear
that individual expertise can have substantial influence on the team performance.

We therefore propose to use the efficiency of the inspection as the basis for deciding the optimal
team size.  Efficiency takes into account the costs of the inspection compared to an alternative
defect detection technique. As shown in Figure 1, while the addition of inspectors increases
effectiveness, the marginal increase in effectiveness decreases. However, each additional
inspector adds to the cost of the inspection. There comes a point where the additional costs of
inspectors outweigh the benefits of detecting more defects.  These defects could be more cost-
effectively detected using another defect detection technique. Our study also uses professional
subjects, which we expect to have a broader generalizeability to practice.

3 Research Method

This section explains how the study was carried out, and the analysis of the data collected during
the study.

3.1 Design of Study
3.1.1 Context of Study

The study was performed in the context of a course on object-oriented development.  The main
objective of this course was to teach participants the principles of object-oriented analysis,
design, and development of information systems.  The course consisted of several modules, each
of which addressed a specific topic in object-oriented development, e.g., object-oriented analysis,
object-oriented design, UML, software inspections, testing, etc.  Each module included practical
exercises in the form of case studies to familiarize the participants with the concepts being taught.

Our data was collected during the module on software inspections.  This module was scheduled
towards the end of the course.  This ensured that the participants already had theoretical and
practical training in the analysis and design of information systems as well as in the UML.  As a
result it is assumed that the subjects were familiar with the analysis and design phases as well as
the notation used in the study materials.

The subjects in this study were 16 professional practitioners with various backgrounds.  Prior to
taking the course they primarily worked as programmers in industry and had various levels of
experience in object-oriented programming. The subjects’ experience was captured with a
questionnaire before the study. We considered the subjects’ experience with UML, design,
programming, and inspections as the most relevant types of experience that would have an
impact on defect detection capabilities.  It was found that most of the subjects had already written
UML documents (median of 4 on a 5 point scale from 1-5 asking about their experience).
Moreover, they had some experience in developing design documents (median of 4 on the
experience scale) and between 1 and 16 years of programming experience with a median of 2
years.  None of them had yet participated in an inspection.

3.1.2 Materials Used in the Study

In order to use a set of diagrams to develop a system, it is necessary to follow a process.  The
development process defines the sequence of steps for building the various UML models.
Moreover, a process relates the different models and diagrams to each other.  This means that a
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development process must make it clear which documents (e.g., models, diagrams) contain
relevant information about which software entities.

Of the leading object-oriented processes in widespread use, the one which best meets this
criterion is the Fusion process (Coleman et al., 1994)20.  Fusion is very precise about which
specific models should be created as part of an object-oriented development project, and what
information these models should contain. In contrast, other object-oriented processes typically
give little prescriptive advice about what exactly to create during a project, and which activities to
perform.  As a consequence, when inspecting an entity, it is not easy to ensure that all the
relevant information (i.e., models) describing properties of the entity have been found and
checked.   For these reasons, Fusion was used as the basis for developing the study materials.

Although Fusion uses diagram types that are quite similar to those of the UML (in fact, some of
the UML models are derived from Fusion), these do conform precisely to the UML standard.
Therefore, in the experiment a hybrid version of the Fusion method was used, known as FuML
(Atkinson, 1998), which specifically adapts Fusion to exploit the UML.  A comparison of FuML
and UML was provided recently in (Laitenberger et al., 2000a), as well as an overview of the
types of FuML models used in our study.

For our study, the FuML models were developed for one system.  This was a point of sales
system. The subjects were provided with the system’s analysis and design documentation. The
size of the point of sales system was 18 pages.  It included 6 collaboration diagrams and 3 design
class diagrams.

A set of nineteen defects were introduced into the design document prior to the study. The
defects primarily related to correctness, consistency, and completeness of the design models.
Some of the defects were made while developing the artifact.  However, some more defects were
introduced in the design documents to have a larger set of defects.  Based on our collective
experience, these defects were perceived to be realistic for UML designs.

To ensure the feasibility of the required reading activities and the possibility for subjects to
scrutinize the design document for defects in a 2-4 hour time frame, a trial run of the artifact
inspection was performed.  As part of the trial run, the artifact was inspected by the authors to
scrutinize the documents for defects. After the trial run, the materials were improved based on
their own experiences in using them.

3.1.3 Execution

An intensive exercise introducing the principles of software inspections and the Fusion
development method was carried out during the inspection module. This included a brief
explanation of the various UML models the subjects were to inspect, as well as the technique that
they would use for reading the document during preparation.  This is a checklist-based reading
technique where the inspectors are given a list of Yes/No questions that they have to answer
while scrutinizing the document.  The checklist can be found in (Laitenberger et al., 2000a).
Then, the subjects used the checklist for individual defect detection in the design document.
While inspecting the design document, the subjects were asked to log all detected defects on a
defect report form.

3.2 Measurement of Efficiency
We defined efficiency as the cost savings from finding defects early. This is a similar concept to
Return on Investment (ROI), except that that efficiency deals with some inconsistent behaviors in
typical ROI calculations. The complete derivation of our efficiency model is given in the appendix.
For our purposes efficieny of any particular UML design inspection is defined as:

                                                          
20 The most popular object-oriented development process is probably the Rational Unified Process (RUP) (Jacobson et
al., 1998). However, the Fusion process is more precise than RUP when it comes to defining when to create the various
models and which set of models to create as part of the development effort.
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Eqn. 2

where InspectionDesignp̂  is the proportion of defects in the document that were found during the

design inspection, InspectionDesignε̂  is the detection effort per defect, and DesignPostε̂  is the effort to

detect and correct defects after the design phase (e.g., through code inspections and the various
phases of testing). The interpretation of this model is quite intuitive. It can be interpreted as the
proportion of defect detection costs that are saved due to the performance of the design
inspection. For example, if the efficiency is 0.54, then this means that 54% of the post-design
defect detection costs have been saved by performing the design inspection.

The first two terms can be calculated easily from the data collected during our study. The third
parameter, DesignPostε̂ , is unknown, and therefore we vary it during our simulations.

In this equation we consider only the detection effort for design inspections.  Below we expand on
this by adding the effort to perform a meeting, and the effort to fix a defect.

3.3 Simulation Parameters
3.3.1 Creating “Virtual Teams”

Since only a fixed number of inspectors were available, different team sizes were formed by
creating “virtual teams”. Virtual teams are combinations of individual inspectors that we create.
For example, for a team size of 2 inspectors, 120 possible combinations are formed (16C2). Using
‘virtual teams’ for evaluating software engineering technologies (or nominal teams as they are
sometimes called) is an approach that has been used in a number of recent studies (Basili et al.,
1996; Briand et al., 2000a; Miller, 1999).

3.3.2 Measurement

We measured two things: the effort for each individual during preparation in minutes, and the
number of defects found by each individual.  We also logged each defect found by each
individual. This allows us to compute the number of unique defects found by a virtual team.

The subjects sometimes reported more defects on their defect report forms than were seeded in
the design documents.  When a true defect was reported that was not on the list of seeded
defects, this defect was added to the list of known defects and then we reanalyzed the defect
report forms of all the remaining subjects.

For virtual teams, the team defect detection effectiveness was computed as:

document design the in defects of no. Total
team theby  found defects of no. Unique

esseffectiven detection defect team Virtual =

The effort per defect, InspectionDesignε̂ , for each virtual inspection team was calculated by taking the

total effort / unique number of defects found.  For example, consider a virtual inspection with
inspector I1 and I2 and having the data as in Table 3.
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Inspector Preperation Effort
(mins)

Total Defects
found

Unique No. of
Defects

I1 20 5
I2 40 8 10

Table 3: Example of data to calculate efficiency.

InspectionDesignp̂  = 10/19

InspectionDesignε̂ = (20+40)/10 = 6

3.3.3 Varying the Post-Design Defect Detection Cost

Since we do not know the cost of post-design defect detection activities, DesignPostε̂ , we simulated

this value. Below we explain how this was done.

We specified the effort per defect for post-design defect detection and correction activities as:

φεε ×= IndividualDesignPostˆ Eqn. 3

Where Individualε  is the average effort per defect for an individual inspector to find a defect (i.e., we

took the average across our 16 subjects).  Therefore, φ  specifies how much larger the cost of
post-design defect detection and correction was compared to the average cost for an individual
inspector to find a defect. We varied φ  from 1 to 2021. A value of 1 indicates that the cost of
finding and fixing a defect during post-design defect detection is equal to the cost of an individual
inspector to find a defect. This is of course not likely to be the case in practice, but allows us to
investigate the behavior of optimal team size in general as φ  increases.

3.3.4 Varying the Meeting Duration

Two main purposes for conducting a meeting during inspections as described by Fagan (Fagan,
1976) are defect detection and defect collection. In Fagan’s inspection, the preparation is carried
out for comprehension of the artifact, and defect discovery takes place during the meeting.
Fagan found inspection meetings to be productive for defect discovery. For some authors,
inspection meetings are essential for the effectiveness of formal technical review as they create
“synergy” among the team that can lead to the discovery of defects not found through individual
preparation (Ackerman et al., 1989).  However, Parnas and Weiss (Parnas and Weiss, 1987)
mentioned that a meeting was unnecessary for defect collection which is the stage where the
defects during the inspections are combined together.

Debate continues over whether group meetings are effective or not. In design inspections
performed on a large project, Votta (Votta, 1993) found that meetings increased the time interval
by approximately 30%.  He was unable to show the presence of synergy since the number of
issues found during preparation were cancelled due to process loss22.  Eick et al. (Eick et al.,
1992) found that 90% of the defects were detected during the preparation phase while 10% were
detected during the meeting. Eick et al.’s results are in contradiction with Fagan’s claim that most

                                                          
21 φ was chosen to be within the range 1 to 20 since as can be seen from the results in Table 3, when φ ≥13, the optimal
team size stays at 15. Therefore, there is no point in increasing the value of φ  further.
22 Process loss is the number of defects found during individual preparation that are lost during meetings (for example,
they are not logged or overlooked).



13

(if not all) errors are found during the inspection meeting.  The conflict is due to the differences in
the goals and techniques for preparation and meeting.

An experiment was carried out by Johnson and Tjahjono (Johnson and Tjahjono, 1998) with
undergraduate students where they assessed whether a real group23 for defect detection
outperformed a nominal group24 for defect collection.  Both methods used paraphrasing, where
the reader attempts to explain and interpret the artifact, for defect detection.  The results showed
that the real group method was more costly than the nominal group in terms of total effort and
effort per defect.  However, less false positives were generated from the real group.  In this
experiment they were unable to show that inspection meetings for the purpose of discovery
outperformed individuals working independently.  Sauer et al. (Sauer et al., 2000) stated that
behavioral theory supported the belief that group meetings did not achieve synergies, that is,
group meetings did not discover a significant number of new defects beyond those already found
by the nominal groups.  Rather, the group performance is dominated by task expertise.

Nevertheless,  there are benefits attributed to meetings.  For example, Johnson and Tjahjono
(Johnson and Tjahjono, 1998) said that meetings helped the participants to improve their
inspection skills, and increased their confidence in the outcome of the inspections.  They also
added  that meetings could be applied in an organization that is introducing inspections.  After the
participants became familiar with the inspection, then the organization could move to a
meetingless approach to reduce costs without decreasing the detection effectiveness. Education
and clarification are other reasons for holding a meeting (Gilb and Graham, 1993; Strauss and
Ebeneau, 1994). Sauer et al. (Sauer et al., 2000) said that the advantage of a meeting was to
discriminate true defects from false positives.  Eick et al. (Eick et al., 1992) mentioned that
inspectors tend to prepare more thoroughly with meetings than without meetings.

We therefore account for meetings in our simulation. However, an important question is what is
the meeting duration ?

Gilb and Gilb (Gilb and Graham, 1993) proposed the duration of a meeting to last not more than 2
hours. Doolan (Doolan, 1992) also suggested not more than 2 hours meeting. Grady (Grady,
1992) stated that the logging meeting is 11/2 hours.  Barnard and Price (Barnard and Price, 1994)
mentioned not more than 2 hrs of inspection meeting.   Strauss and Ebeneau (Strauss and
Ebeneau, 1994) recommended a meeting not to exceed 2 to 3 hours.  Fagan (Fagan, 1976) said
that inspection sessions should generally not exceed two hours. We therefore simulated
inspections without meetings, and with meetings varying from 1 hour, 1.5 hours and 2 hours.

To account for meetings, we modify our equation of efficiency as follows:

( )






×

+
−×=

φε
ηε

Individual

InspectionDesign
InspectionDesignmeeting pEfficiency

ˆ
1ˆ Eqn. 4

where η  is the total meeting effort / unique number of defects detected. Meeting effort is defined

as q x t where q is the duration in minutes and t is the number of inspectors. As can be seen from
the above equation, the addition of meeting duration to the inspections will increase the
inspection effort. Hence, the efficiency for the meeting will decrease for a fixed cost of post-
design defect detection activities (i.e., fixed φ ).

                                                          
23  A real group is one in which members meet and interact with each other to detect defects.
24 A nominal group is one in which the members work individually without any interaction, and their individual results
are aggregated as the group’s result.
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3.3.5 Varying the Effort to Fix Inspection Defects

In our simulation we also accounted for the effort for fixing a defect, ctFixingDefeε̂ . Since we do not

know the effort for fixing a defects, this effort was defined as:

IndividualctFixingDefe c εε ×=ˆ Eqn. 5

where c is a constant between 0 and 1.  In other words, the effort to fix a defect is a multiple of
the effort for an individual to find a defect.  We took the worst case where c is 1. This is the worst
case because typically detecting a defect is a time consuming activity, and during design
inspections the cause of the problem is identified during detection, so the correction effort should
be relatively small.  In this way, the optimal team size will lie between the optimal team sizes
without fixing effort and with fixing effort. Therefore, the equation of efficiency can be expressed
as:







−

×
+

−×=
φφε

ηε c
pEfficiency

Individual

InspectionDesign
InspectionDesign

ˆ
1ˆ

Eqn. 6

3.3.6 Summary

In summary, we vary the following parameters during our simulation:

•  Insection team size ( t ): 2-15 (in increments of 1)

•  Cost ratio (φ ): 1-20 (in increments of 1)

•  Meeting duration ( q ): 0,1,1.5 and 2 hours

•  Relative cost of fixing defects during inspections ( c ): 0 and 1

By taking all possible combinations of the above parameters, our simulation consisted of 2240

different study points. For each study point, all possible combinations t
16C  of inspection teams of

size t  were evaluated. By considering all the study points, we expect to obtain a broad
perspective on the impact of team size on efficiency for UML inspections.

3.4 Data Analysis
For each of the cases above where we simulated ‘virtual teams’ we computed the efficiency. We
took the median value of efficiency as the value for that particular combinaton of simulation
parameters. We then plotted the median effcieny values for numbers of inspectors varying from 2
to 15. Because of the tradeoff between effort and effectiveness, each efficieny curve has a
maximum. The team size at the maximum efficiency is then taken as the optimal team size for
that particular combination of simulation parameters.

Just to illustrate, Figure 3 shows an example from our results. This graph shows box-and-whisker
plots. Here we have the efficiency values as the inspection team size ( t ) was varied for 5=φ ,

no meetings ( 0=q ), and no accounting for fixing effort ( 0=c ). The median efficiency values
clearly reach a maximum at a team size of 8.
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Figure 3: Efficiency plot for φ=5 when there are no meetings performed and no fixing effort.

4 Results

4.1 Optimal Team Size
Table 4 shows the results from all of the efficiency curves with meeting/no meeting, and with
fixing effort/no fixing effort. The cells in the table are the optimal team sizes. These results
indicate that as the cost of post-design defect detection activities increases, more inspectors are
needed to optimize efficiency.  As the meeting duration increases, the optimal team sizes tend to
decrease.   The same trend is observed with fixing effort.

Figure 4 shows the upper bounds and lower bounds for the optimal team sizes for the different
types of meetings. Note that in these plots the curve of φ  versus optimal team size was
smoothed to make the relationship clearer.25

                                                          
25 The smoothing method we used is locally weighted regression (Cleveland and Devlin, 1988) with Friedman’s super
smoother (Friedman, 1984).
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Optimal Team Size

Without Fixing Effort With Fixing Effort

ϕ No
meeting

1 hr 1.5 hr 2 hrs No
Meeting

1 hr 1.5 hr 2 hrs

1 2 2 2 2 2 2 2 2

2 3 2 2 2 3 2 2 2

3 5 4 3 3 3 2 2 2

4 6 5 5 5 5 4 3 3

5 8 7 6 5 6 5 4 5

6 10 9 8 7 8 7 6 5

7 11 9 9 9 11 9 8 7

8 13 9 9 9 11 9 9 9

9 13 11 9 9 13 9 9 9

10 15 15 15 9 15 11 9 9

11 15 15 15 15 15 15 11 9

12 15 15 15 15 15 15 15 11

13 15 15 15 15 15 15 15 15

14 15 15 15 15 15 15 15 15

15 15 15 15 15 15 15 15 15

16 15 15 15 15 15 15 15 15

17 15 15 15 15 15 15 15 15

18 15 15 15 15 15 15 15 15

19 15 15 15 15 15 15 15 15

20 15 15 15 15 15 15 15 15

Table 4 : Optimal Team Size for both Meeting/No Meeting and Fixing Effort/No Fixing Effort.
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Figure 4: Optimal team size curves unde different simulation conditions.
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4.2 Application
These results can be used to obtain initial values for deciding on the inspection team size. If a
company knows the ratio of the cost of post-design defect detection activities to inspection, i.e., φ,
reference can be made to our results to find the optimal team size.

For example, if φ is known to be say 9, and on average defect collection meetings last one hour,
then the optimal team size is between 9 and 11, depending on the cost to fix a design defect
found during inspections.

It should be noted that the values that we have computed for optimal team size are conservative,
or are a lower bound. This is because we assumed that defect propagation is one. This means
that a design defect will propagate into only one defect in detailed design and code. If a design
defect propagates into more than one detailed design or code defect, then design inspection
efficiency increases, making the optimal team size larger than the numbers we have obtained.

In practice, some information cannot be easily obtained by measurements, observations, or
experimentation. Expert judgement can be a solution to the problem. Expert judgement has been
used in software engineering for cost estimation purposes (Briand et al., 1998a; Host and Wohlin,
1997, 1998), and for estimating the number of defects found during inspections (El Emam et al.,
2000).  In a study at Siemens in Germany (Briand et al., 2000b), the authors tried to assess the
efficiency of all inspections taking place in the organization using actual data and subjective
estimates.  For example, the effort during testing was not available. Since the experts often
experience this effort, they were asked to estimate this parameter. Hence, φ can be determined.
Similarly, if the total number of defects were collected, the experts were asked for the percentage
breakdown of the defects origin in each activity in the life cycle, and hence the cost effectiveness
can be calculated for each activity.

4.3 Discussion
We have evaluated the efficiency of inspections to determine the optimal team size. Our results
represent an initial set of curves and tables that provide recommendations on the best team size.
From the above results, we conclude that there is no single optimal team size. Broad claims
about a single optimal team size or a recommended team size for software inspections do not
receive support.

The optimal team size in fact depends on the relative cost of post-design defect detection
activities.  For a low cost of post-design defect detection activities, a small team size is needed.
As this cost increases, a higher team size is required.   However, if we look at Table 4, a team
size of 2 is only optimal under the rather unrealistic conditions that φ<4.  Therefore, this casts
doubt, at least for UML, on earlier prescriptions that only two inspectors are sufficient (Bisant and
Lyle, 1989; Porter et al., 1996; Porter et al., 1997).  Adding meeting effort would decrease the
efficiency since the total effort of the inspections increases.  For a fixed cost of post-design defect
detection activities, it is more efficient to have a smaller team if meetings are held and the longer
the team meeting.

In retrospect it seems obvious that the patterns of efficiency increase/decrease as team size and
φ change.  However, as we saw in the literature review, in the past this has not resulted in clear
guidance on optimal inspection team size.  Therefore, we have quantified these effects to make
precise recommendations which can serve as starting points for organizations implementing UML
design inspections.

One may contest the claim that inspection team sizes should be as small or as large as we have
found. There are three grounds for this when team meetings are held, which we will discuss
below.

One argument that can be made is that inspection teams should be large, even larger than the
optimal team size. For example, Johnson (Johnson, 1998) notes that inspections have a unique
educational capability. He contends that the process of analyzing and critiquing software artifacts
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produced by others is a powerful way to learn about languages, design techniques, and
application domains.  A similar agument is made by Doolan (Doolan, 1992) in that he reports
inspections are a useful mechanism for skills transfer. In such a case, one should add more new
and junior staff to the inspection team to educate them. However, Votta (Votta, 1993), citing
Deming, notes that education by observation and participation is not effective, and that proper
training courses are a better option. Therefore, in this case it is not obvious that team sizes
should be larger than the optimal efficiency teams.

It is possible that a larger team size will lead to a larger development interval when meetings are
performed. Votta (Votta, 1993), expanding on the results in Bradac et al. (Bradac et al., 1993),
notes that approximately 20% of the requirements and design interval is spent just waiting for
inspectors to meet. He also notes that inspection interval accounts for approximately 10% of the
development interval. The inspection interval expands as more inspectors are added. This
prompted him to suggest that team size should be minimized if meetings are held. However, team
size minimization is not an obvious conclusion to draw from the increased interval result. Smaller
teams will find fewer defects which may be found in subsequent defect detection phases.
Isolating and fixing design defects in a subsequent phase takes more time and effort. If a design
defect is found during testing, then retesting is required after a fix. If retesting requires setting up
of a specific hardware and software configuration, then this will add further to the overall
development interval. Therefore, subsequent rework due to defects escaping the design
inspection may actually elongate the interval that we thought was being shrunk through smaller
teams. Consequently, one cannot automatically conclude that smaller inspection teams are
always better in terms of interval.

In an observational study of inspection meetings, Votta (Votta, 1993) noted that the amount of
unproductive time during meetings is in the range of t-4 hours, where t is the number of
participants in the meeting.  This is partially due to the fact that there can only be two people
interacting at any one time. If there are, say, 15 inspectors in a meeting and it lasts two hours,
then this would amount to 11 person-hours of unproductive time per inspection.  This is a potent
argument against having large meetings. Furthermore, given that in our study defect detection
was performed during preparation, then the meeting only adds overhead resulting in reduced
efficiency.  Therefore, one can argue that if meetings with all inspectors are going to be held, then
it is reasonable to keep the team size small, even if it is not the optimal team size. Alternatively,
one can perform the preparation with the optimal team size, even if it large, and have a smaller
number of inspectors participate in the meeting.

4.4 Limitations
We have presented recommendations for the optimal team size for UML design inspections
under various assumptions of cost, meeting duration, and defect fix effort. Our results are
pertinent to the situation where defect detection is an individual activity and the meetings only
serve the purpose of defect collection. Furthermore, we make the assumption that meeting gains
and losses are negligible. At least in our experimental condition, these assumptions were true.

We do not claim that our findings of optimal team size are universal. The generalizability of these
findings will depend on further replications of this study. In a similar manner to performing any
empirical study in software engineering, the effects that we estimate need to be confirmed further.
For instance, if one were to perform a study showing technique A being 50% better than
technique B in the number of defects detected, this effect ought to be confirmed in replicated
studies.

Team sizes larger than 15 were not found to be optimal because 15 is the maximum team size
that we studied. However, inspection of our results indicates that the maximum was reached at a
φ value of approximately 13.  It is plausible that a study with a larger number of subjects will find
that above this cost ratio team sizes larger than 15 are optimal.

The impact of interval was not considered in computing efficiency. In principle we could
incorporate interval into our efficiency model. However, this would have introduced a number of
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new parameters, such as the cost of missing a market opportunity through a delayed release,
which is difficult to estimate. This is certainly an issue that deserves further study.

4.5  Threats To Validity
It is the nature of any empirical study that assumptions are made that later on may restrict the
validity of the results.  Here, we list these assumptions that impose threats to internal and
external validity.  The threats to validity concern the study from which the data that we use was
obtained.

4.5.1 Threats to Internal Validity

A potential threat here is strictly related to the fact that seeded defects were used.  Despite taking
special care to alleviate this, there is always the danger that seeded defects are not the same as
actual defects.  Specifically, they may be easier to detect than actual defects.

A second potential threat which can influence the accuracy of an estimate is the total number of
defects in the artifacts, which in our case is 19.  It is arguable that the number of defects found by
the inspectors only cover a narrow range.

4.5.2 Threats to External Validity

We consider three potential threats to the external validity of our results: subjects, the design
document and the Fusion development process.

Our subjects may not be representative of the pool of software developers that professionally
used the UML for the analysis and the design of object-oriented systems, although they were all
professional developers rather than students.  As noted earlier (see Section 2.2), by definition
expertise will have an influence on the differences amongst inspection teams. Therefore, more
studies with professional subjects need to be performed to confirm our recommended optial team
size.

The design document is not necessarily representative of the ones found in industry.  The
limitation primarily derives from the size of the created design documents.  Components in
industry are usually much larger in size than the ones we used in this experiment.  However, we
consider the amount of material that our subjects were required to inspect in a single inspection
as appropriate.

The design document was developed according to the Fusion development process.  Although
this process is used at Hewlett-Packard (Cohen, 1988), other companies may follow another
development process, e.g., the Rational Unified Process (Jacobson et al., 1998).  Since all of the
Fusion models apart from operation schemata can be found in other UML-based development
processes as well, we believe that this represents a rather limited threat to validity.

5 Conclusions

Software inspections are considered to be one of the most effective methods for software quality
improvement.  In this paper, our focus was on inspections of UML design documents.  We have
been looking at the optimal inspection team size as a technique for maximizing the benefits of
UML inspections.

The optimal team size takes into account the costs of inspections and the savings that accrue
from finding faults during design as opposed to during post-design defect detection activities.  Our
results demonstrate that there is no single optimal team size.  The latter depends on the cost of
post-design defect detection activities.  If an organization knows the ratio of the cost of post-
design defect detection activities to inspection cost, it can determine the optimal team size
through the set of curves and table we have provided.
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To our best knowledge, this study represents the first empirical study that deals with controlling
and improving UML design inspections through the selection of optimal teams sizes.  Future work
ought to replicate this study. Perhaps even more importantly, we have also presented a
methodology for evaluating inspection team size which can be applied by other researchers and
organizations. With a methodology readily available it is hoped that further investigations of this
issue will be conducted.

6 Appendix A: Proof of Generality of Simulation
Results

In section 2.2 we performed a Monte Carlo simulation illustrating that the results of an
experimental study comparing different team sizes will depend on the sample sizes used in the
study. The simulation was done with the dependent variable being the proportion of defects
found, which is defined as the number of defects found divided by the actual number of defects in
the inspected artifact.. We noted that the results are the same even if the dependent variable was
defect density or the number of defects found. Defect density is defined as the number of defects
found divided by size.

The simulation used the t-test for two independent samples (from two groups). The t-test uses the
t-value to determine statistical significance. This is defined as (Sheskin, 1997):
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where 
λ

ijD
 is the dependent variable, with ijD  being the number of defects found during the

inspection by team i  in group j . The λ  value is some constant that characterizes the artifact. If

we are looking at the number of defects, then 1=λ , if we are looking at defect density, then λ
is the size of the artifact, and if we are looking at the proportion of defects found then λ  is the
total number of defects in the artifact before the inspection. Also:
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By substituting the variance and mean values into the equation for the t-value, we get:
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As can be seen from the above equation, the λ  value cancels out. Therefore, irrespective of the
λ  constant that we use (one, size, or the number of defects in the documents), we get exactly
the same results.

7 Appendix B: Measuring Inspection Efficiency

In this appendix we provide the rationale and details of the efficiency model that we use. One
precondition for considering a model to be an efficiency model is that it must at least take into
account the costs of performing an inspection.

7.1.1 Notation

Below we define a general notation for characterizing defect detection phases in a project (see
(Briand et al., 1998b)).  This allows us to subsequently describe existing efficiency models in a
consistent and unambiguous manner.

Since in our study we assume only two defect detection activities, design inspections and post-
design defect detection activities (e.g., code inspections and testing), we limit our discussion
below to the two activity case. We denote these as activity f  and activity )1f( + .Our assumed
unit of observation is the instance of the defect detection activity.

We define the effort consumed to perform a defect detection activity f  as:

factivitydetectiondefectperformingonspenteffortf =ε Eqn. 11

We define the set of unique defects existing in an artifact prior to a defect detection activity f  as:

{ }factivitydetectiondefecttopriorartifacttheinexiststhatdefectaisxxf =α Eqn. 12

We define the set of defects found during a defect detection activity f  as:

{ }factivitydetectiondefectduringdetecteddefectaisxxD f = Eqn. 13

In the case of inspections, fD  would be the number of defects logged during a collection

meeting for example.

The cost per defect of performing defect detection activity f  is defined as:

f

f
f

D

ε
ε =� Eqn. 14
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The defect detection effectiveness of a defect detection activity f  is given by:

f

f

f

D
p

α
=� Eqn. 15

The same formulations can be specified for activity )1f( + .

7.1.2 A Review of Efficiency Models

We now briefly present most of the efficiency models presented in the literature that we deemed
relevant for our purpose.  It should be noted that we only consider efficiency models that explicitly
take cost into account.  Therefore, even though Fagan (Fagan, 1976), Jones (Jones, 1996),
Remus (Remus, 1984) and Collofello and Woodfield (Collofello and Woodfield, 1989) introduce
models which they call error detection efficiency or defect removal efficiency, these models are
not efficiency models according to our conceptualization since they do not consider costs.

7.1.2.1 Basic Model

A simple model for the evaluation of efficiency is presented in (Gilb and Graham, 1993).  This is a
measure of how well effort consumed is made use of, and is defined as the number of defects
found per some unit of time (e.g., work-hour). In our notation, it is:

f

f

f

D
A

ε
=

Eqn. 16

However, this model does not account for defect detection phase f  compared to subsequent
defect detection phases in the development life cycle (i.e., what is the relative advantage of
detecting defects earlier).  Therefore, only the costs of phase f are taken into account, but not any
potential savings.

7.1.2.2 Collofello and Woodfield Efficiency Model

Collofello and Woodfield (Collofello and Woodfield, 1989) defined efficiency in general as:

factivitydetectiondefectbyConsumedCosts

factivitydetectiondefectbysavedCosts
B f = Eqn. 17

Assuming a defect detection activity f  detected and removed defects from a software artifact,

we consider that if these defects had not been removed during f , they would have been
removed in a later defect detection activity.  Therefore, the potential costs associated with
detecting and correcting the defects in later phases are saved by performing f .

Based on this assumption, the costs saved by some activity f  are calculated as the sum of the

costs that would be incurred with having to use activity ( )1f +  to handle the defects detected by

phase f .

The full equation for efficiency can be expressed as:-

f

f1f1f

f

Dp
B

ε
ε ××

= ++
��

Eqn. 18
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For activity ( )1f + , we calculate the costs saved as the product of the effort per defect for

activity ( )1f +  multiplied by the number of defects expected to be detected by phase ( )1f + .

The number of defects expected to be detected by phase ( )1f +  can be calculated as the

product of the effectiveness of phase ( )1f +  and fD .

However,

7.1.2.3 ROI Model

An alternative model that builds on the Collofello and Woodfield work is the Return on Investment
model used at HP (Franz and Shih, 1994).  In particular, the value of costs saved in the Collofello
and Woodfield model does not consider the cost of detection phase f itself in calculating the
savings.  Therefore, the costs saved numerator is changed by subtracting the costs consumed by
f:

factivityinconsumedCosts

factivityinconsumedCostsfactivityperformingbysavedCosts
C f

−= Eqn. 19

This is an improvement in that now we consider the real costs saved.  It can be expressed as
follows:

( )
f

ff1f1f

f

Dp
C

ε
εε −××

= ++
��

Eqn. 20

7.1.2.4 Kusumoto’s Efficiency Model

Kusumoto (Kusumoto, 1993) noticed a discrepancy in the application of models such as fC
above.  The discrepancy can be demonstrated with reference to the two projects in Figure 5.
These projects only have two defect detection phases: inspections and testing.  In both projects,
if inspections had not been done, the cost of testing would be 1000 units.  The first inspection
consumes 10 units of cost, and saves 100 units.  Therefore, the total cost is 910.  The second
inspection costs 60 units, and saves 600.  The total cost is 460.  In the second case, inspections
saved much more of total defect detection costs than the first, therefore one would expect it to be
more efficient.  However, using the ROI model, for, example, would give them both an efficiency

fC  of 9.
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Figure 5: Comparing two different inspections.

To address this problem, Kusumoto proposes a new model. He first introduces the concept of
virtual testing cost. This is the total cost of testing if no inspections were conducted at all.  He
suggests that instead of using the costs consumed as the denominator, we should use the total
potential cost that would be consumed had inspections not been conducted (i.e., the virtual
testing cost).

Using our notation, Kusumoto’s efficiency can be expressed as:

( )
1ff

ff1f1f

f

Dp
E

+

++

×

−××
=

εα

εε
�

��
Eqn. 21

Following (Briand et al., 1998b), we make the assumption that all the defects in the artifact prior
to phase f , i.e., fα , are detectable by subsequent defect detection activities.26 Therefore,

                                                          
26 Based on our best judgement, this was true for the defects in the document used in our study.



26

1p 1f =+
�

. Since we have made a distinction only between two activities: design and post-design

defect detection activities, the efficiency is more clearly given as:











−×=

DesignPost

InspectionDesign
InspectionDesignf pE

ε
ε

ˆ

ˆ
1ˆˆ Eqn. 22
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