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Abstract

The construction of software cost estimation models remains an active topic of research.  The basic
premise of cost modelling is that a historical database of software project cost data can be used to
develop a quantitative model to predict the cost of future projects.  One of the difficulties faced by
workers in this area is that many of these historical databases contain substantial amounts of missing
data.  Thus far, the common practice has been to ignore observations with missing data.  In principle,
such a practice can lead to gross biases, and may be detrimental to the accuracy of cost estimation
models.  In this paper we describe an extensive simulation where we evaluate different techniques for
dealing with missing data in the context of software cost modelling.  Three techniques are evaluated:
listwise deletion, mean imputation and eight different types of hot-deck imputation. Our results indicate
that all the missing data techniques perform well, with small biases and high precision.  This suggests
that the simplest technique, listwise deletion, is a reasonable choice.  However, this will not necessarily
provide the best performance.  Consistent best performance (minimal bias and highest precision) can be
obtained by using hot-deck imputation with Euclidean distance and a z-score standardisation.

1 Introduction
There exists a vast literature on the construction of software cost estimation models, for example [60][17]
[1][2][12][25][42][28][49][82][88][79][87].  The basic premise is that one can develop accurate quantitative
models that predict development effort using historical project data. The predictors typically constitute a
measure of size, whether measured in terms of LOC or a functional size measure, and a number of
productivity factors that are collected through a questionnaire, such as questions on required reliability,
documentation match to life cycle needs and analyst capability [85].

Knowing the estimated cost of a particular software project early in the development cycle is a valuable
asset. Management can use cost estimates to approve or reject a project proposal or to manage the
development process more effectively. For example, additional developers may need to be hired for the
complete project or for areas that will require a large amount of effort.  Furthermore, accurate cost
estimates would allow organizations to make more realistic bids on external contracts.  Cost estimation
models have not been limited to prediction of total project cost. For instance, some recent work
constructed a model to estimate the effort to perform a software process assessment [44], and to
estimate the effort required to become ISO 9001 certified [71][72], both of which are relevant to
contemporary software organizations.

A common practical problem with constructing cost estimation models is that the historical software
engineering data sets frequently contain substantial numbers of missing values [14][15][35]. Such
missingness would impact the productivity factors in historical data sets most severely since they are the
variables collected through a questionnaire. While one should strive to minimise missing values, in
practice their existence is usually unavoidable. Missing values are not unique to software cost estimation,
but is a problem that concerns empirical scientists in other disciplines [48][38][55].
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The most common factors that lead to missing data include individuals not responding to all questions in
a questionnaire, either because they run out of time, they do not understand the questions or they do not
have sufficient knowledge to answer the questions and opt not to respond, or individuals may not wish to
divulge certain information that is perceived to be harmful or embarrassing to them. Furthermore, missing
values increase as more variables are included in a data set [74].  It is common for cost estimation data
sets to have a multitude of productivity factors.

There are many techniques that have been developed to deal with missing data in the construction of
quantitative models (henceforth missing data techniques or MDTs) [56].  The simplest technique is to
ignore observations that have missing values (this is called listwise deletion).  In fact, this is the default
approach in most statistical packages [56].  This, however, can result in discarding large proportions of a
data set and hence in a loss of information that was costly to collect.  For example, Kim and Curry [48]
note that with only 2% of the values missing at random in each of 10 variables, one would lose 18.3% of
the observations on average using listwise deletion. Furthermore, with 5 variables having 10% of their
values missing at random, 41% of the observation would be lost with listwise deletion, on average.
Furthermore, listwise deletion may bias correlations downwards.  If a predictor variable has many missing
high values, for example, then this would restrict its variance, resulting in a deflation of its correlation with
a completely observed criterion variable. The same applies if the missing values were on the criterion
variable.  Measures of central tendency may be biased upwards or downwards depending on where in
the distribution the missing data appear. For example, the mean may be biased downward if the data are
missing from the upper end of the distribution.

Another set of techniques impute the missing values.  A common approach is to use mean imputation.
This involves filling in the missing values on a variable with the mean of observations that are not missing.
However, mean imputation attenuates variance estimates.  For example, if there are 30 observations of
which 5 have missing values, then we could substitute five means.  This would increase the number of
observations without affecting the deviations from the overall mean, hence reducing the variance [57]
[59].  There are alternative forms of imputation that are based on estimates of the missing values using
other variables from the subset of the data that have no missing values.

In the context of cost estimation, researchers rarely mention how they dealt with missing values. 1  When
they do, their solution tends to be to ignore observations with missing values, i.e. listwise deletion.  For
example, in the Walston and Felix study [88], different analyses rely on a different number of observations
from the historical database, indicating that for some of the variables there were missing values.  In one
recent cost estimation study of European space and military projects, the authors removed observations
that had missing values, resulting in some instances to the loss of approximately 38% of the observations
[17].  A comparison study of different cost estimation modelling techniques noted that for approximately
46% of the observations there were missing values [19].  The authors then excluded observations with
missing values for the different types of comparisons performed.  Another study used a regression model
to predict the effort required to perform a software process assessment based on the emerging ISO/IEC
15504 international standard [44]. In this study 34% of the total number of observations were excluded
from the analysis due to missing values.

To date, there is no evidence that such a simple practice is the best one, or if it is detrimental to the
accuracy of cost estimation models.  It is plausible that certain types of imputation techniques would save
the large proportions of discarded data and result in models with much improved prediction accuracy.  It
would be of practical utility then to have substantiated guidelines on how to deal with missing values in a
manner that would minimise harm to model accuracy.  Our study takes a step in that direction.

In this paper we present a detailed simulation study of different techniques for dealing with missing values
when building cost estimation models: listwise deletion, (unconditional) mean imputation, and eight
different types of hot-deck imputation. We also simulate three different types of missingness mechanisms:

                                                          
1 This is also a typical problem in other disciplines.  For example, in one study [75], articles from the Journal of Applied Psychology
and Personnel Psychology were randomly chosen and examined to see what methods were used to handle missing data.  It was
found that many studies do not state whether or not observations contained missing data. It follows that in these cases the
technique for dealing with missing data is not mentioned either. One reason for this could be that journals only accept those studies
that are deemed strong and may hesitate to publish studies that report high levels of missing data. Evidence suggested that 1/2 to
2/3 of the studies ignored observations with missing values.
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missing completely at random, where missingness depends on the size of the project, and where
missingness depends on the value of the variable with missing values; two types of missing data patterns:
univariate (random) and monotone; and missingness on one productivity factor up to all productivity
factors in a model.  Our evaluative criteria focus on the accuracy of prediction, and consist of the common
measures: Absolute Relative Error and Pred25 [25].  The summary measures are the bias and variation
of the accuracy measures (precision).  We focus on ordinary least squares regression as the modelling
technique since this is one of the most common modelling techniques used in practice [35], e.g.
[69][88][23][22][17][60].  Furthermore, there has been recent compelling evidence that ordinary least
squares regression is as good as or better than many competing modelling techniques in terms of
prediction accuracy [41][18][19].

Briefly, our results indicate that all MDTs have a good performance in terms of bias and precision under
the different contexts simulated.  This suggests that the simplest technique, listwise deletion, is a
reasonable choice.  However, listwise deletion will not provide the best performance amongst the different
MDTs.  Consistently better performance is obtained by using hot-deck imputation with Euclidean distance
and a z-score standardisation, even for large percentages of missing data.

In the following section we present an overview of the missing data problem and the techniques that have
been developed for dealing with it.  Section 3 describes our research method in detail.  The results of our
simulation are described in Section 4 with a discussion of their implications and limitations.  We conclude
the paper in Section 5 with a summary and directions for future research.

2 Background
In this section we define some terminology and provide an overview of MDTs and their general
applicability.

2.1 Terminology
An important distinction when discussing MDTs is the mechanism that caused the data to be missing [56].
Consider a data set with two variables, X1 and X2.  Let us assume that missing data occurs on variable X1

only.  To make the scenario concrete, let variable X1 be analyst capability and variable X2 be project size.
If the probability of response to X1 does not depend on either X1 or X2, then it is said that the missing data
mechanism is Missing Completely At Random (MCAR). Thus, if the missingness of the analyst capability
variable is independent of project size and analyst capability, the mechanism is MCAR. If the probability
of response depends on X2 but not on X1, then we say that the missing data mechanism is Missing At
Random (MAR).  This would be exemplified by the situation whereby the missingness on the analyst
capability variable is higher for small projects than for large projects.  The third mechanism is if the
probability of response depends on the value of X1 itself.  This would occur if respondents tend not to
answer the question when the analyst capability is low.  This is termed non-ignorable response.

In general, the suitability of MDTs will be influenced by the missing data mechanism and the percentage
of observations with missing values.  We outline some common MDTs below.

2.2 Common MDTs
There exist several strategies for dealing with missing data. It is generally accepted that if the data set
contains a relatively small amount of missing data and if this data is missing randomly, then all MDTs will
be equally suitable [29][51][48][3][73]. It should be noted that caution must be exercised when classifying
data sets as having small amounts of missing data. For example, if the small amount of missing data is
only found in a few variables and is distributed randomly among all observations, the total percentage of
observations containing missing data may still be relatively large.  For example, if only 5% of the
observations on each of 5 variables have missing values, then approximately 23% of the observations will
have a missing value.  The choice of MDT becomes more important as the amount of missing data in the
data set increases [73]. Another important factor in choosing a suitable MDT is the mechanism that leads
to the missing values, whether MCAR, MAR or non-ignorable [56]. For example, if we have many missing
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values for large projects, an inappropriate MDT may distort the relationship with effort, potentially leading
to less accurate predictions.

There are two general classes of MDTs that can be applied: deletion methods and imputation methods.
These are described below.

2.2.1 Deletion Methods

Deletion methods ignore missing values. These procedures may result in the loss of a significant amount
of data, but are widely used because of their simplicity [75][48].

2.2.1.1 Listwise Deletion

Analysis with this method makes use of only those observations that do not contain any missing values.
This may result in many observations being deleted but may be desirable as a result of its simplicity [48].
This method is generally acceptable when there are small amounts of missing data and when the data is
missing randomly.

2.2.1.2 Pairwise Deletion

In an attempt to reduce the considerable loss of information that may result from using listwise deletion,
this method considers each variable separately. For each variable, all recorded values in each
observation are considered and missing values are ignored. For example, if the objective is to find the
mean of the X1 variable, the mean is computed using all recorded values. In this case, observations with
recorded values on X1 will be considered, regardless of whether they are missing other variables. This
technique will likely result in the sample size changing for each considered variable. Note that pairwise
deletion becomes listwise deletion when all the variables are needed for a particular analysis, (e.g.
multiple regression). This method will perform well, without bias, if the data is missing at random [56].

It seems intuitive that since pairwise deletion makes use of all observed data, it should outperform listwise
deletion in cases where the missing data is MCAR and correlations are small [56]. This was found to be
true in the Kim and Curry study [48] . In contrast, other studies have found that when correlations are
large, listwise outperforms pairwise deletion [3]. The disadvantage of pairwise deletion is that it may
generate an inconsistent covariance matrix in the case where multiple variables contain missing values.
In contrast listwise deletion will always generate consistent covariance matrices [48].

In cases where the data set contains large amounts of missing data, or the mechanism leading to the
missing values is non-random, Haitovsky proposed that imputation techniques might perform better than
deletion techniques [36].

2.2.2 Imputation Methods

The basic idea of imputation methods is to replace missing values with estimates that are obtained based
on reported values [78][30]. In cases where much effort has been expended in collecting data, the
researcher will likely want to make the best possible use of all available data and prefer not to use a
deletion technique [24]. Imputation methods are especially useful in situations where a complete data set
is required for the analysis [57]. For example, in the case of multiple regression all observations must be
complete. In these cases, substitution of missing values results in all observations of the data set being
used to construct the regression model. It is important to note that no imputation method should add
information to the data set. In the case of multivariate data, it makes sense that we might be able to
obtain information about the missing variable from those observed variables. This forms the basis for
imputation methods. The primary reason for using imputation procedures is to reduce the non-response
bias that would result if all the observations that have missing values are deleted.

2.2.2.1 Mean Imputation

This method imputes each missing value with the mean of observed values. The advantage of using this
method is that it is simple to implement and no observations are excluded, as would be the case with
listwise deletion. The disadvantage is that the measured variance for that variable will be underestimated
[76][56]. For example, if a question about personal income is less likely to be answered by those with low
incomes, then imputing a large amount of incomes equal to the mean income of reported values
decreases the variance.
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2.2.2.2 Hot-deck Imputation

Hot-deck imputation involves filling in missing data by taking values from other observations in the same
data set. The choice of which value to take depends on the observation containing the missing value. The
latter property is what distinguishes hot-deck imputation from mean imputation.

In addition to reducing non-response bias and generating a complete data set, hot-deck imputation
preserves the distribution of the sample population. Unlike mean imputation, which distorts the distribution
by repeating the mean value for all the missing observations, hot-deck imputation attempts to preserve
the sample distribution by substituting different observed values for each missing observation.

Hot-deck imputation selects an observation (donor) that best matches the observation containing the
missing value (client). The donor then provides the value to be imputed into the client observation. For
example, a study may be able to gather a certain variable for all observations, such as geographic
location. In this case a categorical hot-deck is created in which all observations are separated into
categories according to one or more classification variables, in this case geographic location.
Observations containing missing values are imputed with values obtained from complete observations
within each category. It is assumed that the distribution of the observed values is the same as that of the
missing values. This places great importance on the selection of the classification variables.

In some studies there may not be any categorical data and the variables in which to assess ‘similarity’
may be numerical. In this case, a donor is selected that is the most similar to the client. Similarity is
measured by using a distance function that calculates the distance between the client and prospective
donors. The hot-deck is the set of all complete observations. For each client, a donor (or set of donors) is
chosen from the hot-deck that contains the smallest distance to the client. This distance can be based on
one or more variables. The selection of which variables to use in the distance function is ideally those
variables that are highly correlated to the variable being imputed. In the case where a set of donors has
been obtained, the value to impute may be taken from the best donor, random donor, or an average over
all donors. The purpose of selecting a set of donors is to reduce the likelihood of an extreme value being
imputed one or more times [30][78].

Colledge et al. concluded that hot-deck imputation appears to be a good technique for dealing with
missing data, but suggested that further analysis be done before widespread use [24].

2.2.2.3 Cold Deck Imputation

This method is similar to hot-deck imputation except that the selection of a donor comes from the results
of a previous survey [56].

2.2.2.4 Regression Imputation

Regression imputation involves replacing each missing value with a predicted value based on a
regression model. First, a regression model is built using the complete observations. For each incomplete
observation, each missing value is replaced by the predicted value found by replacing the observed
values for that observation in the regression model [56].

2.2.2.5 Multiple Imputation Methods

Modelling techniques that impute one value for each missing value underestimate standard error. This is
the case because imputing one value assumes no uncertainty. Multiple imputation remedies this situation
by imputing more than one value, taken from a predicted distribution of values [58]. The set of values to
impute may be taken from the same or different models displaying uncertainty towards the value to
impute or the model being used respectively. For each missing value an imputed value is selected from
the set of values to impute, each creating a complete data set.  Each data set is analysed individually and
final conclusions are obtained by merging those of the individual data sets. This technique introduces
variability due to imputation, contrary to the single imputation techniques.

2.3 Summary
To our knowledge, there have been no previous studies of MDTs within software engineering.  Therefore
it is not possible to determine which MDTs are suitable and under what conditions for software
engineering studies.
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In our study, we focus on simple methods that would allow researchers to easily implement the result.
Three types of MDTs are evaluated: listwise deletion, mean imputation, and hot-deck imputation.  We
chose listwise deletion because it is common practice in software cost estimation studies, and therefore
we wished to determine its performance. Furthermore, it has been noted that in general empirical
enterprises, listwise deletion and mean imputation are the most popular MDTs [73].  Hot-deck imputation
is of interest since it has been adopted in some highly visible surveys, such as the British Census [7][30],
the U.S. Bureau of the Census Current Population Survey, the Canadian Census of Construction [30],
and the National Medical Care Utilization and Expenditure Survey [55].  Furthermore, some authors
contend that the hot-deck is the most common MDT for complex surveys [29].

3 Research Method
3.1 Objective of Study
The objective of this study is to compare different MDTs for dealing with the problem of missing values in
historical data sets when building software cost estimation models. Since for cost estimation models the
most important performance measure is their prediction accuracy, we evaluate how this accuracy is
affected by using the different missing data techniques.  By identifying the most appropriate technique,
future researchers would have substantiated guidance as to how to deal with missing values.

3.2 Data Source
The data set used in this study is called the Experience Database. The Experience Database began with
the co-operation of 16 companies in Finland. Each company must purchase the Experience tool and
contribute the annual maintenance fee. This entitles them to the tool that incorporates the database, new
versions of software and updated data sets. Each company can add their own data to the tool and are
encouraged through incentives to donate their data to the shared database. For each project donated, the
company is given a reduction in the annual maintenance fee. Since all companies collect the data using
the same tool and the value of each variable is well defined, integrity and comparability of the data is
maintained. In addition, companies that provide data are subsequently contacted in order to verify their
submission.

The primary advantage of this data base for our study is that it does not contain missing values. The fact
that this relatively large data set does not contain missing values is due to the careful manner in which the
data was collected and extensive follow up. This allows us to simulate various missing data patterns and
mechnisms, as will be explained below.

The data set is composed of 206 software projects from 26 different companies. The projects are mainly
business applications in banking, wholesale/retail, insurance, public administration and manufacturing.
This wide range of projects allows for generalisable conclusions that can be applied to other projects in
the business application domain. Six of the companies provided data from more than 10 projects. The
system size is measured in unweighted and unadjusted Function Points [2].  For each project, we had the
total effort in person-months and values on fifteen productivity factors. The variables considered in our
analysis are presented in Table 1.
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Variable Description Values / Range / Unit

Effort Total project effort Person hours (ph)

FP System size measured in function points Unadjusted Unweighted Function Points

PF01-
PF15

15 Productivity Factors:

Customer Participation, Development Environment, Staff
Availability, Level and use of standards, Level and use of
Methods, Level and use of Tools, Logical Complexity of the
Software, Requirements Volatility, Quality Requirements,
Efficiency Requirements, Installation Requirements, Analysis Skills
of Staff, Application Experience of Staff, Tool Skills of Staff,
Project and Team Skills of Staff

1 – 5 (very small – very large)

Table 1: Variables Used in our simulation from the Experience Database.

Table 2 summarises the descriptive statistics for system size (FP) and project effort (person-hours: ph).
The breakdown of projects per organisation type is 38% banking, 27% insurance, 19% manufacturing,
9% wholesale, and 7% public administration. Figure 1 and Figure 2 illustrate the proportions of projects
for different application types and target platforms.
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Whole data set

Size (FP) Effort (ph)

Min 10 250

Mean 118.7 6644.9

Max 558 63694

st. dev 101.6 8684.3

Obs 206 206

Table 2: Descriptive statistics for system size and effort.

3.3 Validation Approach
If a cost estimation model is developed using a particular data set and the accuracy of this model is
evaluated using the same data set, the accuracy obtained will be optimistic. The calculated error will be
low and will not represent the performance of the model on another separate data set.  We therefore
randomly split the total data set into equal sized parts (with 103 observations each), to obtain a training
data set and a test data set.  We used the training data set for building the estimation model, and the test
data set for evaluating the performance of the model.

3.4 Regression Model
We used multivariate least squares regression analysis to fit the data to a specified model that predicts
effort [37].  The selected model specification is exponential, because linear models revealed marked
heteroscedasticity, violating one assumption for applying regression analysis.

One can make other substantive arguments for selecting this functional form.  In software engineering
there has been a debate over whether economies of scale do indeed exist, and if so, what is the
appropriate functional form for modelling such economies. The concept of economies of scale states that
average productivity increases as the system size increases.  This has been attributed, for example, to
software development tools whereby the initial tool institutionalisation investment may preclude their use
on small projects [12].  Furthermore, there may be fixed overhead costs, such as project management,
that do not increase directly with system size, hence affording the larger projects economies of scale. On
the other hand, it has been noted that some overhead activities, such as documentation, grow at a faster
rate than project size [43], contributing to diseconomies of scale.  Furthermore, within a single
organisation, it is plausible that as systems grow larger, then larger teams will be employed. Larger teams
introduce inefficiencies due to an increase in communication paths [21], the potential for personality
conflicts [12], and more complex system interfaces [25].  A series of studies on the existence of
(dis)economies of scales provided inconsistent results [9][10][50].  In another effort to determine whether
such (dis)economies of scale exist, Hu [39] compared a simple linear model with a quadratic, log-linear,
and translog models, and used objective statistical procedures to make that determination. He also
investigated what the appropriate functional form should be.  He concluded that the quadratic form is the
most appropriate.  Subsequently his study was criticised on methodological grounds [70][17].  Another
study that compared functional forms that addressed some of these shortcomings concluded that the log-
linear form, which we use, is the most plausible one [17].

The general form of the regression model is as follows:

( ) ( ) ( )∑
>

+++=
0

110 logloglog
i

ii TFPEffort βββ
Eqn. 1

where the iT  values are the productivity factors.

It is known that many of the productivity factors are strongly correlated with each other [17][50][84].
Although some cost estimation models have been developed that contain many productivity factors,
[88][5][12][61] found that for a given environment, only a small number of significant productivity factors
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are needed in order to develop an accurate effort estimation model. This conclusion is supported by
[50][66][8].

Therefore, we first reduced the number of variables down from 15 using only the training data set.  Two
approaches were considered.  The first was a mixed stepwise process to select variables having a
significant influence on effort.  The second is the leaps and bounds algorithm [32], which is an efficient
algorithm for performing regressions for all possible combinations of the 15 productivity factors (size was
always included).  The model with the largest adjusted R2 value was selected.  The leaps and bounds
algorithm is advantageous in the sense that it performs an exhaustive search, and therefore we used that
as the basis for variable selection.  We retained the variables identified by the all variable subsets search
that were statistically significant at a one-tailed alpha level of 0.05 (we used a one-tailed test because we
have a priori expectations about the direction of the relationship).

The final model is summarised in Table 3. We refer to this model as the baseline model since it has been
developed with the complete training data set (i.e., no missing values). We used the condition number of
Belsley et al. [11] as an indicator of collinearity.  It was lower than the threshold of 30, and hence we can
be confident that there are no multicollinearity problems in this model.

Variable (log) Regression
Coefficient

Standard Error t value 1-tailed
p-value

Intercept 2.96 0.512 5.78 <0.0001

System size (function points) 0.85 0.09 9.34 <0.0001

Logical complexity of software 0.68 0.27 2.53 0.013

Requirements volatility 0.904 0.26 3.5 0.0007

Application knowledge of staff -0.392 0.201 -1.95 0.054

Table 3: Baseline model parameters.  The adjusted R2 is 0.61, and the F test of all parameters equal to
zero had a p value of <0.0001.

3.5 Scale Type Assumptions
According to some authors, one of the assumptions of the OLS regression model is that all the variables
should be measured at least on an interval scale [13]. This assumption is based on the mapping originally
developed by Stevens [83] between scale types and "permissible" statistical procedures. In our context,
this raises two questions. First, to what extent can the violation of this assumption have an impact on our
results ? Second, what are the levels of our measurement scales ?

Given the proscriptive nature of Stevens’ mapping, the permissible statistics for scales that do not reach
an interval level are distribution-free (or nonparametric) methods (as opposed to parametric methods, of
which OLS regression is one) [80]. Such a broad proscription is viewed by Nunnally as being "narrow"
and would exclude much useful research [68]. Furthermore, studies that investigated the effect of data
transformations on the conclusions drawn from parametric methods (e.g., F ratios and t tests) found little
evidence supporting the proscriptive viewpoint [53][52][6]. Suffice it to say that the issue of the validity of
the above proscription is, at best, debatable. As noted by many authors, including Stevens himself, the
basic point is that of pragmatism: useful research can still be conducted even if, strictly speaking, the
proscriptions are violated [83][13][33][86].  Therefore, consideration should be given to the
appropriateness of making the interval scale assumptions in each individual case rather than adopting a
blanked proscription. A detailed discussion of this point and the supporting literature is given in [16].

Our productivity factors utilised a single item each.  In practice, single item measures are treated as if
they are interval in many instances.  For example, in the construction and empirical evaluation of the User
Information Satisfaction instrument, inter-item correlations and principal components analysis are
commonly performed [40].  It is also useful to note a study by Spector [81] which indicated that whether
scales used have equal or unequal intervals does not actually make a practical difference. In particular,
the mean of responses from using scales of the two types do not exhibit significant differences, and that
the test-retest reliabilities (i.e., consistency of questionnaire responses when administered twice over a
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period of time) of both types of scales are both high and very similar. He contends, however, that scales
with unequal intervals are more difficult to use, but that respondents conceptually adjust for this.

3.6 Evaluative Measures
In order to evaluate the impact of MDTs, we define two different evaluative measures:2 magnitude of
relative error (MRE) and prediction at level l  (PRED( l )) [25]. These are calculated from the model
developed using the training data set and evaluated on the test data set.

The MRE is defined as:

i

ii
i

Effort Actual

Effort PredictedEffort Actual
MRE

−
= Eqn. 2

The MRE value is calculated for each observation i whose effort is predicted. The aggregation of MRE
over all predicted observations, N , was achieved by taking the median of the MRE (MdMRE) over
N observations.3

A complementary criterion that is also used is the prediction at level l , 
N

k
lPRED =)( , where k  is the

number of observations where MRE is less than or equal to l .  For our study we set l  to 25%.  The
Pred25 provides the percentage of observations whose effort estimates were within 25% error.

The ordinary least squares modelling technique minimises the sum of squared error criterion, whereas we
are evaluating the resulting model in terms of the absolute relative error. Miyazaki et al. [64] have noted
this discrepancy in the software cost estimation literature, and it was alluded to by Shepperd and
Schofield [79].  Ideally, one would wish to optimise on the same criterion as one is evaluating on.  Not
doing so would be expected to lead to sub-optimal cost estimation models.  However, thus far, it is not
established to what extent such a sub-optimisation exists in the software cost estimation area.

Relative error (or absolute relative error) has a clear intuitive appeal as an evaluative criterion (i.e., it is
easy to interpret and convey its meaning to project managers who are the ultimate users of cost
estimation models).  For example, it is regularly used to compare the accuracy of cost estimation models
and modelling techniques [47][41][18][19][79][82].  One possible solution to the above incongruence is to
use alternative modelling techniques that optimise on the relative error.  To our knowledge, this has rarely
been performed thus far in the software engineering literature, with notable exceptions being [63][79].  In
fact, ordinary least squares regression is one of the most common modelling techniques used in practice
[35], e.g. [18][19][41][66][69][88][23][22][17][60]. Furthermore, there has been recent compelling evidence
that ordinary least squares regression is as accurate as or more accurate than many competing modelling
techniques [41][18][19].  Also, using least squares regression with a (absolute) relative error evaluative
criterion is also common practice, [41][18][19][69][60][25][66][79]. Therefore, should other modelling
techniques emerge, enjoy wide acceptance, and are consistently demonstrated to be superior, then it
would be prudent to perform an evaluative study of MDTs on these as well.

                                                          
2 A third potential evaluative measure is concerned with consistency of estimation.  This is defined as the correlation between the
estimated and the actual effort, and has been used in a number of previous studies [66][2][47].  The logic of using this measure is
that the existence of consistency, even if it is consistency in under or overestimation, project managers would be able to easily
adjust for that using say a constant multiplier and the estimation model would still be of value.  However, it was shown in a recent
report [20] that adjusting consistent underestimates with a constant multiplier will increase accuracy but dramatically increase
variability, and will reduce the acccuracy of overestimates.  In our simulation we, therefore, focus only on accuracy of prediction.
3 An implicit assumption in using MRE as a measure of predictive accuracy is that the error is proportional to the size of the project.
For example, a 15 person-month overestimate for a 15 person-month project is more serious than for a 100 person-month project.
On the other hand, Miyazaki et al. have criticised the MRE measure because it penalises overestimates more than underestimates
[63], and propose a new measure to alleviate this. However, Shepperd and Schofield [79] note that the proposed Myiazaki measure
of accuracy is effectively two distinct measures that should not be combined.  We therefore utilise the commonly used MRE as no
alternatives have enjoyed acceptance within the software engineering community.
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3.7 Simulation Approach
There are three general approaches that one can use to study the effect of dealing with missing values,
two being simulations.  The first possibility is to use an actual data set that had missing data, that were
subsequently obtained through follow-up activities.  This would allow the researcher to compare the
performance of models using the data set with missing values after an MDT is applied, and the complete
data set after follow-up.  This is the approach used in the study by Cox and Folsom [26].  However, it is
rare in practice to have such a data set.

The second is a Monte Carlo simulation.  Under this approach, one constructs artificial data sets whose
variables have known distributions and known inter-correlations.  Then one creates missing values in
these artificial data sets following various missingness schemes that one wants to study.  Subsequently,
different MDTs are applied and their performance evaluated in comparison to the known characteristics of
the artificial data.

An example of such a Monte Carlo simulation is [76].  The analysis considered only cases where
observations were partially incomplete, not those in which there was a complete non-response.
Techniques considered were listwise deletion, pairwise deletion, mean imputation, regression imputation,
and hot-deck imputation. The complete data set used for the analysis was generated from a population
correlation matrix. Various statistics were generated based on the complete data set to be compared with
those generated after inducing missing values and application of the various MDTs. Missing values were
induced in 10, 20 and 30% of the observations randomly. The effectiveness was based on calculation of
root mean squared error and absolute error.

A potential disadvantage of the Monte Carlo approach is that one cannot be certain that the population
characteristics that are being simulated are congruent with real data sets.  Therefore, one would not know
the extent to which the conclusions can be generalised to actual practical situations.  This approach can
be mitigated by basing the population parameters on values obtained from previous studies, such as in
the Monte Carlo simulation performed by Kim and Curry [48].

An alternative approach is to use an actual data set relevant to the problem.  This data set would have to
be complete (i.e., no missing data).  One would then create missing values that follow a known pattern
and mechanism. Subsequently, different MDTs are applied and their performance evaluated in
comparison to the results that would be obtained had there been no missing data.

An example of this kind of approach is the study of [51].  This study analysed the performance of five
MDTs for dealing with data missing nonrandomly namely listwise deletion, pairwise deletion, mean
imputation, simple regression imputation, and multiple imputation. Performance of each technique was
based on parameter estimates of a two predictor regression model. Bootstrap samples were taken from
actual field data and missing values were assigned to one variable, based on the value of that variable.

The approach we have followed in our study is in the final category.  We used the Experience Database
as our complete data set.  The overall simulation approach is summarised in Figure 3.
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Establish Baseline Model
MdMRE and Pred25

Iterate 500 times:

Induce missing data in training data set

Apply MDT and build regression model using training data

Compute MdMRE and Pred25 on the test data set

Compare results from 500 iterations
with baseline MdMRE and Pred25

Figure 3: Summary of simulation approach.

The baseline model was already described in Section 3.4.  Using the baseline model, we predicted the
effort on the test data set and found the MdMRE to be 47% and the Pred25 to be 24%. Note that the
calculation of these measures is based on the original units, not the log transformed ones.  These serve
as our baseline MdMRE and baseline Pred25 and will be referred to as baselineMdMRE  and

baselinePred25  respectively.

We describe the remaining steps of our simulation approach below.

3.8 Inducing Missing Data
We consider four parameters in simulating the missing data:

• The percentage of observations with missing data.

• The number of variables that have missing data (we only consider missing values on the
productivity factors)

• The missing data mechanism

• The pattern of missing data

Five different percentages of missing values were simulated (5,10,15,25,40). It is generally accepted that
data sets with more than 40% missing data are not useful for detailed analysis.

Since our final model has three productivity factors, we consider missing values on one up to all three
variables for all permutations.

Three missing data mechanisms were evaluated: missing completely at random (MCAR), missing at
random (MAR), and non-ignorable missingness.

The implementation of the MCAR mechanism to induce missing data was straightforward. Missing values
were induced for the desired variable completely at random.



V21 13

For MAR, we simulated the situation where missing values depend on the size of the project. The
implementation of the MAR mechanism to induce missing data involves first ordering the observations
according to project size. Missing values are induced with biases for both small and large project sizes.
Once the data set is ordered, it is split up into quintiles. Each quintile will receive different percentages of
missing values. The total percent of missing values is divided by 10 to get a value for k. The separate
quintiles will be induced with 4k, 3k, 2k, k, and 0k missing values. For example, if the total amount of
missing data to be created is 10%, then each quintile will be induced with 4, 3, 2, 1, and 0% missing
values. It is important to note that within each quintile, missing values are induced randomly.

For non-ignorable missingness, we simulated missing values that depend on the particular variable in
question. Implementation was identical to MAR except that the observations were ordered by the variable
to be induced with missing data. Quintiles were formed and missing values were created as described for
MAR. Missing values are induced with biases for both low and high values for each variable.

Two patterns of missing data were simulated.  The first is univariate missing data, whereby the values are
missing on each variable separately according to one of the mechanisms described above.  Each
independent variable was induced with missing values according to the pattern shown in Figure 4 (left
panel).

The second is monotone missing data, whereby the variables can be ordered in terms of their extent of
missingness.  This means that all observations with missing data for X2 also have missing data for X1, but
the reverse is not always true [58].

The implementation of monotone missing data is illustrated with two variables.  It easily generalises to the
case of more than two variables. The monotone pattern of missingness is shown in Figure 4 (right panel).
The first variable is induced the same way as for the univariate case. Next, half of the observations that
contain missing values at the first variable will have their second variable induced with a missing value.
For the MCAR mechanism of missing data, half of the total number of observations containing missing
data will have missing data on two variables. For the MAR mechanism, half of the observations for each
quintile will contain missing data for both variables. It follows that although the total amount of missing
values being induced is greater in the monotone case as compared to the univariate case, the total
number of observations that contain at least one missing value will be the same.

Figure 4 : Univariate and monotone patterns of missing data.

In total, we considered all combinations of percentage of missing data, number of variables and their
permutations, missingness mechanism, missingness pattern, and MDT.  Each one of these is a study
point.  For each study point and MDT combination we performed the simulation 500 times.4 For each of
the 500 iterations, we built a new ordinary least squares regression model.  Subsequently, we performed
a prediction on the test set and computed the evaluative measures.

                                                          
4 We randomly selected some of the study points and performed the simulations with 1000 iterations. Our conclusions were not
affected, and in fact even the summary values obtained were very similar.

…

X1 X2 Xk

…

X1 X2 XkX3
1
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3.9 Summary Measures
For each run of the simulation we computed the MdMRE and Pred25.  From these numbers we have to
produce concise summaries of the results. We consider two types of summaries: bias and precision.  Bias
tells us how different the results are from those that would be obtained had there been no missing data
(i.e., the baseline). Precision informs us about the dispersion or variability in this accuracy difference.

From the 500 simulations we computed the ( )baselinei MdMREMdMRE −  difference for each simulation

i. This was then plotted on a box-and-whisker plot to illustrate bias (median) and precision (inter-quartile
range).  The same was done for the Pred25 as ( )baselinei Pred25Pred25 −  for each simulation i.

3.10 MDTs Evaluated
The implementation of the MDTs that we studied is described below.

3.10.1 Listwise Deletion

For listwise deletion, observations containing missing data are ignored. The regression model is built
using only observations that contain no missing values.

3.10.2 Mean Imputation

After the database has been induced with missing values, each missing value is replaced by the mean
calculated for all observed cases for that variable. For the univariate case, the mean is calculated for the
variable that contains missing values and this value is imputed for all observations that contain a missing
value. For the multivariate case, multiple means are calculated, one for each variable that contains
missing values. The same value will be imputed for all missing observations.

Once all the values have been imputed the regression model is generated. Unlike listwise deletion, no
observations are lost and the regression model is based on the complete data set containing imputed
values.

3.10.3 Hot-Deck Imputation

Once the missing observations have been created in the database, each missing value is imputed with a
donor value picked from the one of the observations without missing data.  We now present some
notation to help explain the different types of hot-deck imputation that we implemented.

We divide the data set into those observations with missing values, the missing set, and those
observations without missing values, the complete set.  Let ix  be the vector of all variables measured on

the thi  observation in the missing set, and ijx  be the value of the thj  variable measured on the

observation. Further, let kc  be the vector of all variables measured on the thk  observation in the

complete set, and let kjc  be the value of the thj  variable measured on that observation.

We constructed a numeric hot-deck function. In setting up a hot-deck function, different hot-deck
parameters can potentially have a non-negligible impact on its performance:

• In calculating a distance between an observation in the missing set and the complete set,
variables containing values that are much larger than those in other variables will dominate the
distance (e.g., size has a much larger range than the productivity factors). Standardisation will
prevent those variables from having a larger influence (in effect, treating all variables as being
equally important). Which standardisation technique should be used ?

• There are multiple possible distance measures that can be employed. Which one should be
used?

Below we describe these parameters and the particular values that we evaluated, including justifications
for the selections made.



V21 15

First, we consider three different standardisation approaches: z-score, mean absolute, and 5Z , in

addition to the case of no standardisation.

A simulation study in the area of cluster analysis found one type of standardisation scheme to be superior
in recovering the underlying cluster structure under different conditions including error free data, and data
with noise and with outliers [62]. However, the parameters of that simulation are not necessarily reflective
of software cost data, and therefore this standardisation scheme, referred to as 5Z , is evaluated here:
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As will be noted, this has a non-robust denominator in that it will be easily affected by even a single
outlier. A more traditional standardization scheme that makes the unit of the variables the sample
standard deviation is the z-score:
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A more robust approach for standardisation is to use the mean absolute deviation [89] instead of the
standard deviation in the denominator. This is robust because the deviations are not squared, therefore
atypical points do not exaggerate it [46]. Robustness is desirable because software measurements
typically have a few extreme values that may exert strong influence on the analysis results (e.g., see
[67]).
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For each observation that contains a missing value a distance is determined between it and all
observations in the complete set. A multitude of different distance functions can reasonably be used in a
hot-deck function. We limit ourselves to the common distance functions in other disciplines. We also limit
ourselves to the context where the predictor variables are continuous, since we treat them this way in the
regression model.

Kaufman and Rousseeaw [46] define the Minkowski distance as follows:
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
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Eqn. 6

The most commonly used distance functions for continuous variables are the Euclidean and Manhattan
distances.

The Euclidean distance between a component i  in the missing data set and a component k  in the
complete set is given by (i.e., 2=q ):
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( )∑ −=
j

ijkjik xcEuclidean 2 Eqn. 7

The Manhattan distance is defined by (i.e., 1=q ):

ijkj
j

ik xcManhattan −= ∑ Eqn. 8

A priori, there is no compelling reason to prefer one distance function over another, and therefore, it is
prudent to evaluate them empirically.

Using both functions, a value is determined for the distance between the observation containing a missing
value and all observations in the hot-deck. The distance function takes as input the size variable and all
productivity factors except the one that is missing. The missing value is imputed with the variable from the
observation in the hot-deck that has the smallest distance from the observation containing the missing
value.

Once all missing values have been imputed with values obtained from the hot-deck, the data set is
complete and the regression model is generated.

3.11 Summary
In this section we have described the overall simulation approach. The defined study points include all
techniques for inducing missing values combined with the MDTs studied. Such a comprehensive
simulation should provide us with a reasonable picture of the strengths and weaknesses of each MDT
under different missing data scenarios.  Furthermore, the fact that the simulation is based on an actual
data set should give us confidence in the applicability of the results within the same application domain.

4 Results
In this section we present the results for each MDT in turn.
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Figure 5: Listwise deletion for univariate missing data pooled across all productivity factors.
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4.1 Listwise Deletion
Figure 5 shows the box-and-whisker plots for listwise deletion under the three missingness mechanisms.
Here, the plots are only for the univariate pattern. The results for the monotone pattern are not presented
because with listwise deletion they are, by definition, exactly the same as in the univariate case.

A number of conclusions can be drawn from these plots:

• The bias is systematically small, being always less than 0.03 difference from the complete data set
results.  It can be argued that such a small bias is almost negligible in practice given that typical
parametric cost estimation models have relative errors that can be quite large.

• The precision of the accuracy measures decreases as the extent of missing data increases (i.e., there
is more variability).

• For non-ignorable missingness, the bias increases slightly as the extent of missing data increases.

• For the MAR and non-ignorable mechanisms, there is no striking difference between biases for large
vs. small.

• For low percentages of missing data, up to 15%, listwise deletion performs remarkably well, with a
negligible bias in its performance.  At higher extents of missing data, the bias in terms of MdMRE and
Pred25 is still rather small in absolute terms. Since these results hold even for missingness on all
productivity factors, they indicate that listwise deletion is a reasonable approach.

In general, we can conclude that listwise deletion has a remarkably small bias, even at high percentages
of missing data.  The disadvantage of listwise is that the variability in the accuracy tends to be large at
higher percentages of missing data.  As will be seen later, this variability is smaller for other MDTs.
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Figure 6: Mean Imputation for univariate missing data pooled across all productivity factors.



V21 20

4.2 Mean Imputation
4.2.1 Univariate Missingness

Figure 6 shows the results for mean imputation for univariate missing data.  A number of conclusions can
be drawn from these plots:

• In general, the precision is higher (less variability) than the comparable situation with listwise deletion.

• For MCAR and MAR, bias tends to be almost zero.  There is more fluctuation in bias for non-
ignorable missingness, especially at higher extents of missing values.

• Mean imputation seems to be a good MDT given that its use for the univariate case results in little
bias compared to the complete case results.

4.2.2 Monotone Pattern

Figure 7 shows the results for the monotone pattern of missingness on two variables (pooled across all
permutations).  We can observe that:

• Variability tends to be larger then for univariate missingness.  Otherwise the results are similar to the
univariate case for MCAR and MAR mechanisms.

• The largest bias is obtained for 25% and 40% missing data with the non-ignorable missingness
mechanism.

• In comparison to listwise deletion, the mean imputation MDT tends to exhibit less variability in its
accuracy.

Figure 8 shows the results when we consider the monotone pattern for all three productivity factors.  The
results are very similar to Figure 7 with missing values on only two productivity factors, and hence so are
the conclusions.
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Figure 7: Mean Imputation MDT for monotone missing data pooled across permutations of two productivity factors.
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Figure 8: Mean Imputation MDT for monotone missing data pooled across permutations of three productivity factors.
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4.3 Hot-Deck
For hot-deck imputation we did not find any non-negligible difference amongst the alternative
implementations of hot-deck (i.e., different distance measures and standardization schemes).  Therefore
we present the results for the hot-deck variant with Euclidean distance and z-score standardization.  The
conclusions we draw, however, are applicable to the other variants as well.

4.3.1 Univariate Missingness

Figure 9 shows the results for the univariate case using hot-deck imputation.  The following observations
can be made:

• Compared to mean imputation, hot-deck imputation has a consistently smaller bias, but the variability
in the accuracy measures tends to be slightly larger.  The variability is still smaller than for listwise
deletion.

• The bias is almost zero except that it increases slightly for non-ignorable missingness with high
percentages of missing values.

4.3.2 Monotone Pattern

As for mean imputation, the results are the same for the cases with missing values on two variables and
on three variables.  Therefore we only present the results for the two variable case.  Figure 10 shows the
box-and-whisker plots for the cases with missing values on two variables, pooled across all permutations.
We can observe that:

• The variation in the accuracy measures is slightly larger than for the univariate case.

• Compared to mean imputation, the bias tends to be smaller but the variation in the accuracy measure
is slightly larger. In particular, with non-ignorable missingness and high percentages of missing
values, hot-deck tends to have a lower bias.



V21 24

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MCAR - MRE

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MAR (small) - MRE

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MAR (large) - MRE

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

NI (small) - MRE

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

NI (large) - MRE

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MCAR - Pred25

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MAR (small) - Pred25

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

MAR (large) - Pred25

Percent Missing

B
ia

s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

NI (small) - Pred25

Percent Missing
B

ia
s

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10
0.

15

5% 10% 15% 25% 40%

NI (large) - Pred25

Percent Missing

B
ia

s

Figure 9: Hot-Deck MDT for univariate missing data pooled across productivity factors.
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Figure 10: Hot-Deck MDT for monotone missing data pooled across permutations of two productivity factors.
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4.4 Summary
Below we provide an overall summary of our findings:

• In general, all MDTs tend to perform well in absolute terms, with their bias being consistently of a
low percentage.  This has some implications on previous software engineering research.  Given
that the most common practice thus far has been to use listwise deletion, our results indicate that
the detrimental consequences of this would be rather minor.  Listwise deletion has the appeal of
being a simple approach.  However, researchers could do better, as we discuss below.

• For all mechanisms and patterns, we found that the performance of the MDTs (in terms of bias
and precision) deteriorates as the percentage of missing data increases.  This is more
pronounced for non-ignorable missingness.  Although this deterioration was only slight in the
case of hot-deck imputation.

• The precision of listwise deletion tends to be worse than the other MDTs, especially as the
percentage of missing data increases.

• For hot-deck imputation, the differences amongst the various types of hot-deck parameters were
not marked.  Therefore, we suggest a traditional hot-deck is appropriate.  A traditional hot-deck
uses Euclidean distance and z-score standardisation. Euclidean distance is the most common
distance measure, and thus its appeal. Standardisation is a reasonable thing to do given that
otherwise size would systematically dominate any distance.

• In general, the MDTs tend to perform slightly worst with monotone patterns of missingness
compared with the univariate pattern. 5

• For monotone patterns of missingness, increasing the number of productivity factors with missing
values to more than two does not have a marked impact on the performance of MDTs.6

• The MDTs tend to perform slightly worst under non-ignorable missingness compared with MCAR
and MAR.

• Any hot-deck imputation technique will work well in absolute terms, with accuracy differences
from a complete data set rarely, if ever, going above 0.03. Mean imputation performs slightly
worst than hot-deck, but the degradation is minor.  Listwise deletion still performs very well, but its
performance is a slight degradation over mean imputation and hot-deck.

4.5 Discussion
The best way to handle missing data is to maximise response in the original sample. In some cases it
may be desirable to resample if large amounts of missing data are in the original sample.  But in the most
likely scenario, in which there is missing data, we can make some practical recommendations.
Furthermore, if ensuring complete data sets would be too costly, then our recommendations would result
in models that would be almost as accurate had complete data sets been attained.

We found that in general, all MDTs perform rather well in terms of bias and precision.  The differences
between the MDTs under the various simulated conditions are small.  This implies that common practices
thus far of using listwise deletion would not have penalised the accuracy of cost estimation models too
greatly.

One potential reason for this finding is that the impact of the productivity factors is rather small compared
with the effect of size.  This is similar to the conclusion drawn in a previous study, where Matson et al.
showed that there was only a small improvement from adding more variables to the baseline model
relating effort to project size [60].  This can be explained in a number of ways.  It is plausible that the
impact of the productivity factors is marginal after size has been accounted for, at least from a prediction
perspective.  It is also plausible that the productivity factors are not measured reliably and therefore, even
                                                          
5 Except for listwise deletion, where the results are exactly the same as for the univariate missingness case.
6 Except for listwise deletion, where the results are exactly the same as for the univariate missingness case.
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though the concepts they measure influence effort, this is not apparent from the data.  If this is the case,
then predictions will not be grossly affected by missing values.

Amongst the MDTs examined, we found that imputation techniques perform better than listwise deletion.
To obtain the best performance from cost estimation models, it would therefore be prudent to apply an
imputation technique.  From our simulation results, we can recommend using hot-deck imputation for cost
estimation modelling.  This tends to have low bias, even in the case where there is non-ignorable
missingness and a high percentage of missing values.  Furthermore, the variability in the accuracy
measures tend to be the smallest for hot-deck imputation.

It can be argued that in practice the assumption of an MCAR mechanism is unrealistic in software
engineering [65].  Therefore, the missingness mechanism is expected to be either MAR or non-ignorable
in practice.  The robust performance of hot-deck imputation, especially with both of these mechanisms,
makes it more attractive.

4.6 Comparison to Previous Work
The literature suggests that under MCAR and a low percentage of missing data, listwise deletion tends to
perform well.  For instance, Gilley and Leone [34] state “If the item nonresponse is nonsystematic and
represents a small percentage of a reasonably large sample, then excluding the nonrespondents from the
sample would have a negligible effect on any statistical results”, and Frane [31] notes “If the number of
subjects with missing data is small, if data are missing at random, and if interest lies in statements
regarding a population rather than individuals, the elimination of subjects with missing data is likely to
lead to a satisfactory analysis.”  Furthermore, one Monte Carlo simulation provides corroborative results
in that at low percentages of missing values (10% or less), they found that listwise deletion does not give
markedly distorted estimates of regression coefficients and R2 when data is missing at random [73].

Another study [51] analysed the performance of five MDTs for dealing with data missing nonrandomly,
namely listwise deletion, pairwise deletion, mean imputation, simple regression imputation, and multiple
imputation. Performance of each technique was based on parameter estimates of a two predictor
regression model. The results showed that in general the three imputation techniques examined, mean
imputation, simple regression imputation and multiple imputation, did not perform well with nonrandomly
missing data. In contrast, the listwise and pairwise deletion techniques performed well when the level of
missing data was less than 30%. This is consistent with our results, in that listwise deletion produces
reasonable results under a variety of different missingness schemes and relatively high percentages of
missing data.

For low percentages of missing values under MCAR, Roth [75], based on a literature review,
recommended using hot-deck imputation. A simulation study by Lee and Chiu [54] led to the conclusion
that listwise deletion is a preferred MDT to mean imputation when computing the polychoric correlation.
We are, however, assuming a regression model.

Roth and Switzer [76] performed a Monte Carlo simulation comparing different MDTs. Techniques
considered were listwise deletion, pairwise deletion, mean imputation, regression imputation, and hot-
deck imputation under an MCAR mechanism. The results showed that pairwise deletion had the least
amount of dispersion and average error around true scores for bivariate correlations. In the case of
multiple regression, the performance of pairwise deletion was similar to that of listwise deletion.
Furthermore, the authors recommended against the use of mean imputation.  For regression parameters,
the authors noted that there are slight differences between the various MDTs studied.  This is consistent
with our conclusions, even for MAR and non-ignorable missingness mechanisms.  In our study, however,
we did find that mean imputation performed better than listwise deletion for the MCAR setting.

Another simulation found that for data missing at random, mean imputation tended to perform slightly
better than listwise deletion [73]. This is consistent with our results.  For high percentages of missing
values under MCAR and MAR, Roth recommended hot-deck imputation [75]. This is the same conclusion
that we drew based on our simulations for the software cost estimation problem.  Similarly, he
recommends hot-deck for low percentages of data that is not missing at random.  At high percentages of
data that are not missing at random, Roth suggested maximum likelihood estimation [75]. However, we
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did not evaluate this as part of our study. We did find that hot-deck imputation worked best under these
conditions for the software cost estimation problem.

One study by Kaiser found that the performance of hot-deck methods decreases with an increase in the
proportion of records containing missing values, the increase in the number of missing values in each
record, or the combination of both [45].  This is somewhat consistent with our results, except that we did
not find that increases in the number of variables that have missing values beyond two had a substantial
impact on the accuracy of hot-deck imputation.  Further evaluations of the hot-deck procedure were
performed [29][4][26][27].

Cox and Folsom [26] performed a simulation using an actual data set, where they were evaluating
estimates of univariate means and proportions under different MDTs.  They found that for discrete
questionnaire items, hot-deck tended to reduce bias compared to listwise deletion, with better
performance for items that had the greatest missingness.  However, they also noted that the variance of
the estimates was inflated by hot-deck.  This was also noted by Ernst [27].  For continuous items, they
concluded that the performance of hot-deck was inferior: it did not reduce the bias in the estimates and
when it did, the variance was large.  This is consistent with our results, in that the productivity factors can
be considered as discrete variables by their definition, and we found that hot-deck tended to outperform
listwise deletion.  Another simulation was performed by Ford [29] where he compared six different MDTs,
including four variants of hot-deck imputation.  His criteria were estimates of the mean and its variance.
Ford found that there was no difference in the performance amongst the different MDTs, although they
were better than listwise deletion.  This finding is also consistent with our simulation results.  Both of the
above studies, however, focus on parameters that are different from those that we evaluated (i.e., the
accuracy of predictions from a regression model).

Perhaps the most important message from the above review is that it is critical to evaluate quantitative
techniques using software engineering data sets.  There is a mixed correspondence between our results
and those obtained from previous studies.  This is not surprising since the previous work used different
evaluation criteria, and the distributions of the variables they simulated were different.  Furthermore,
techniques such as hot-deck, which tend to work best when there are strong correlations between the
covariates and the variable with missing values, will perform differently depending on the correlation
structure amongst the variables.  This correlation structure may not be transportable from other
disciplines.

4.7 Limitations
In this paper we reported on a simulation study to evaluate some MDTs for dealing with missing data
during the construction of software cost estimation models. While we have attempted to design the
simulation to be as comprehensive as possible, covering many plausible different missingness scenarios,
we cannot claim that this study is the last word on missingness for cost estimation modelling. Below we
identify the limitations of the study, which in turn suggest avenues for further research. However, it should
be noted that most of these limitations are a consequence of the scope that we have defined for our
study. We already simulated a large number of study points. Further simulations can be performed to
address situations that we have not considered.

Our simulation study was performed using one data set in the business application domain. Although the
data set was large, giving us confidence in the conclusions we draw, other simulations would have to be
performed on different data sets to confirm our findings. We have attempted to be precise in describing
the details of our simulation as an aid for future replications.

We only simulated missingness on the productivity factors. Our rationale has been that if data on the size
variable and the effort variable are missing, when building a cost estimation model, then one has little to
go on. This may be a reflection of a serious data collection problem. Whereas missingness on
questionnaire responses, while not desirable, is more likely to happen.

Our evaluation criteria concerned only prediction accuracy.  We did not consider the parameter estimates
in the regression models or the effect of MDTs on statistical tests of significance. The objective of our
study was to focus on the utility of such models for making effort predictions for new projects. It is
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plausible that a simulation that used other evaluative criteria may come up with different
recommendations.

The simulations we performed selected three productivity factors out of an initial fifteen.  We did not utilise
the dropped twelve productivity factors during the imputation procedures we used. Since the excluded
factors are likely strongly correlated with some of the included factors (and this is one reason for droping
them in our analysis due to the increased risk of collinearity in the regression model otherwise), they may
have served as useful covariates in a hot-deck and have resulted in even better performance for this
imputation MDT.  However, in practice, researchers would be more likely to exclude variables with many
missing values from their analysis, and therefore excluded variables would not necessarily serve as good
covariates.

We only considered up to 40% of the observations having missing values, which encompasses most
practical situations.  It is possible that in some studies there would be more than 40% missing values.
However, it is contended that this would be an indicator of a severe data collection problem.  For
instance, Raymond and Roberts [73] state “With 40 percent of the data missing, one would have to
question seriously the appropriateness of conducting any anaylsis.”  Furthermore, the wisdom of doing
any analysis with 30-40% missing data has been questioned by Roth [75] and Ford [29].

Finally, our simulation focused on ordinary least squares regression as the modelling technique.  This is
the most popular technique for building cost estimation models, and has been found in recent studies to
perform at least as good as alternatives. It is plausible that other modelling techniques would require
different MDTs.

5 Conclusions
The objective of this paper was to perform a comprehensive simulation to evaluate techniques for dealing
with missing data in cost estimation models.  We simulated a total of 825 study points, varying: the
number of variables with missing data (from 1 to three), the percentage of missing data (from 5% to 40%),
the missing data mechanism (MCAR, MAR, and non-ignorable missingness), the missing data pattern
(univariate and monotone), and comparing 10 different techniques for dealing with missing data. The
performance of this study was greatly facilitated by the existence of a large and complete software project
data set.  This is not very common, as many cost data sets do have missing values.

Our results provide practical and substantiated guidelines for researchers and practitioners constructing
cost estimation models when their data sets have missing values.  Although we show that deleting
observations with missing values has a small penalty, better performance would be obtained from
applying imputation techniques.

We encourage the replication of this simulation study on alternative data sets to confirm, or otherwise, our
conclusions.  If indeed further replications confirm our findings, then this has important practical
significance to those building cost estimation models.  Furthermore, future work ought to examine
alternative imputation techniques, as these may provide even better performance than the ones we
studied.

6 Acknowledgements
We wish to thank Risto Nevalainen and Pekka Forselius of Software Technology Transfer Finland (STTF)
for defining, collecting, and providing us with the data set used in this study.  We also thank the
anonymous reviewers for their comments, which resulted in substantial improvements to this work.

7 References
[1] A. Albrecht: “Measuring Application Development Productivity”.  In SHARE/GUIDE: Proceedings of

the IBM Applications Development Symposium, pages 83-92, 1979.



V21 30

[2] A. Albrecht and J. Gaffney: “Software Function, Source Lines of Code, and Development Effort
Prediction”. In IEEE Transactions on Software Engineering, 9(6):639-648, 1983.

[3] S. Azen and M. Van Guilder: “Conclusions Regarding Algorithms for Handling Incomplete Data”. In
Proceedings of the Statistical Computing Section, American Statistical Association, 53-56, 1981.

[4] J. Bailar III, B. Bailar: “Comparison of Two Procedures For Imputing Missing Survey Values”. In
Proceedings of the Section on Survey Research Methods, American Statistical Association. 462-
467, 1978.

[5] J. Bailey and V. Basili: “A Meta-Model For Software Development Resource Expenditures”. In
Proceedings 5th International Conference on Software Engineering, Lund, Sweden, July 1983, 107-
116, 1981.

[6] B. Baker, C. Hardyck, and L. Petrinovich: “Weak Measurements vs. Strong Statistics: An Empirical
Critique of S. S. Stevens’ Proscriptions on Statistics”. In Educational and Psychological
Measurement, 26:291-309, 1966.

[7] K. Baker, P. Harris, and J. O’Brien: “Data Fusion: An Appraisal and Experimental Evaluation”. In
Journal of the Market Research Society, 31:153-212, 1989.

[8] R. Banker, S. Datar, and C. Kemerer: “A Model to Evaluate Variables Impacting the Productivity of
Software Maintenance Projects”. In Management Science, 37(1), 1-18, 1991.

[9] R. Banker and C. Kemerer: “Scale Economies in New Software Development”. In IEEE
Transactions on Software Engineering, 15(10):1199-1205, 1989.

[10] R. Banker and C. Kemerer: “The Evidence on Economies of Scale in Software Development”. In
Information and Software Technology, 36(5):275-282, 1994.

[11] D. Belsley, E. Kuh, and R. Welsch: Regression Diagnostics: Identifying Influential Data and Sources
of Collinearity. John Wiley and Sons, 1980.

[12] B. Boehm: Software Engineering Economics. Prentice-Hall, 1981.
[13] G. Bohrnstedt and T. Carter: “Robustness in Regression Analysis”. In: Costner, H. (ed). Chapter 5,

Sociological Methodology. Jossey-Bass, 1971.
[14] L. Briand, V. Basili, and W. Thomas: “A Pattern Recognition Approach for Software Engineering

Data Analysis”. In IEEE Transactions on Software Engineering, 18(11):931-942, 1992.
[15] L. Briand: “Quantitative Empirical Modeling for Managing Software Development: Constraints,

Needs and Solutions”. In H.D. Rombach, V. Basili, and R. Selby (eds.): Experimental Software
Engineering Issues: Critical Assessment and Future Directions. Springer-Verlag, 1993.

[16] L. Briand, K. El Emam, and S. Morasca: “On the Application of Measurement Theory in Software
Engineering”. In Empirical Software Engineering: An International Journal, 1(1), 61-88, 1996.

[17] L. Briand, K. El Emam, and I. Wieczorek: “Explaining the Cost of European Space and Military
Projects”. In Proceedings of the International Conference on Software Engineering, pages 303-312,
1999.

[18] L. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. Maxwell: “An Assessment and
Comparison of Common Software Cost Estimation Modeling Techniques”. In Proceedings of the
International Conference on Software Engineering, pages 313-322, 1999.

[19] L. Briand, T. Langley, and I. Wieczorek: “A Replicated Assessment and Comparison of Common
Software Cost Modeling Techniques”. To appear in Proceedings of the International Conference on
Software Engineering, 2000.

[20] L. Briand, K. El Emam, B. Freimut, and O. Laitenberger: “A Comprehensive Evaluation of Capture-
Recapture Models for Estimating Software Defect Content”. To appear in IEEE Transactions on
Software Engineering, 2000.

[21] F. Brooks: The Mythical Man Month. Addison-Wesley, 1975.
[22] B. Clark: The Effects of Software Process Maturity on Software Development Effort. PhD Thesis,

University of Southern California, 1997.
[23] B. Clark, S. Devnani-Chulani, and B. Boehm: “Calibrating the COCOMO II Post-Architecture Model”.

In Proceedings of the 20th International Conference on Software Engineering, pages 477-480, 1998.
[24] M. Colledge, J. Johnson, R. Pare, I. Sande: “Large Scale Imputation of Survey Data”. In

Proceedings of the Section on Survey Research Methods, American Statistical Association, pages
431-436, 1978.

[25] S. Conte, H. Dunsmore, and V. Shen: Software Engineering Metrics and Models.
Benjamin/Cummings Publishing Company, 1986.



V21 31

[26] B. Cox and R. Folsom: “An Empirical Investigation of Alternate Item Nonresponse Adjustments”. In
Proceedings of the Section on Survey Research Methods, American Statistical Association. 219-
223, 1978.

[27] L. Ernst: “Weighting to Adjust For Partial Nonresponse”. In Proceedings of the Section on Survey
Research Methods, American Statistical Association. 468-472, 1978.

[28] G. Finnie and G. Wittig: “A Comparison of Software Effort Estimation Techniques: Using Function
Points with Neural Networks, Case-Based Reasoning and Regression Models”. In Journal of
Systems and Software, 39:281-289, 1997.

[29] B. Ford: “Missing Data Procedures: A Comparative Study”. In Proceedings of the Social Statistics
Section, American Statistical Association. 324-329, 1976.

[30] B. Ford: “An Overview of Hot-Deck Procedures”. In W. Madow, I. Olkin, and D. Rubin (eds.):
Incomplete Data in Sample Surveys, Volume 2: Theory and Bibliographies. Academic Press, 1983.

[31] J. Frane: “Some Simple Procedures for Handling Missing Data in Multivariate Analysis”. In
Psychometrika, 41(3):409-415, 1976.

[32] G. Furnival and R. Wilson: “Regressions by Leaps and Bounds”. In Technometrics, 16(4):499-511,
1974.

[33] P. Gardner: “Scales and Statistics”. In Review of Educational Research, 45(1), 43-57, 1975.
[34] O. Gilley and R. Leone: “A Two-Stage Imputation Procedure for Item Nonresponse in Surveys”. In

Journal of Business Research, 22:281-291, 1991.
[35] A. Gray and D. MacDonnell: “A Comparison of Techniques for Developing Predictive Models of

Software Metrics”. In Information and Software Tehcnology, 39: 425-437, 1997.
[36] Y. Haitovsky: “Missing data in regression analysis”. In Journal of the Royal Statistical Society,

B30,67-81, 1968.
[37] W. Hayes: Statistics. Fifth Edition, Hartcourt Brace College Publishers, 1994.
[38] D. Heitjan: “Annotation: What Can Be Done about Missing Data? Approaches to Imputation”. In

American Journal of Public Health, American Public Health Association, pages 548-550, 1997.
[39] Q. Hu: “Evaluating alternative Software Production Functions”. In IEEE Transactions on Software

Engineering, 23(6):379-387, 1997.
[40] B. Ives, M. Olson, and J. Baroudi: “The Measurement of User Information Satisfaction”. In

Communications of the ACM. 26(10), 785-793, 1983.
[41] R. Jeffery, M. Ruhe, and I. Wieczorek: “A Comparative Study of Cost Modeling Techniques Using

Public Domain Multi-Organizational and Company-Specific Data”.  To appear in Proceedings of the
European Software Control and Metrics Conference (ESCOM), 2000.  Also, to appear in Information
and Software Technology, 2000.

[42] R. Jensen: “A Comparison of the Jensen and COCOMO Schedule and Cost Estimation Models”. In
Proceedings of the International Society of Parametric Analysis, pages 96-106, 1984.

[43] C. Jones: Programming Productivity. McGraw-Hill, 1986.
[44] H. Jung and R. Hunter: “Modeling the Assessor Effort in Software Process Assessment”. Submitted

for publication, 1999.
[45] J. Kaiser: “The Effectiveness of Hot-Deck Procedures in Small Samples”. Paper presented at the

Annual Meeting of the American Statistical Association, 1983.
[46] L. Kaufman and P. Rousseeuw: Finding Groups in Data. John Wiley & Sons, 1990.
[47] C. Kemerer: “An Empirical Validation of Software Cost Estimation Models”. In Communications of

the ACM, 30:416-429, 1987.
[48] J. Kim and J. Curry: “The Treatment of Missing Data in Multivariate Analysis”. In Social Methods &

Research. 6:215-240, 1977.
[49] B. Kitchenham and N. Taylor: “Software Project Development Cost Estimation”. In Journal of

Systems and Software, 5:267-278, 1985.
[50] B. Kitchenham: “Empirical Studies of Assumptions that Underlie Software Cost-Estimation Models”.

In Information and Software Technology, 34(4):211-218, 1992.
[51] J. Kromrey and C. Hines: “Nonrandomly Missing Data In Multiple Regression: An Empirical

Comparison Of Common Missing-Data Treatments”. In Educational and Psychological
Measurement, 54(3), 573-593, 1994.

[52] S. Labovitz: “Some Observations on Measurement and Statistics”. In Social Forces, 46(2), 151-160,
1967.



V21 32

[53] S. Labovitz: “The Assignment of Numbers to Rank Order Categories”. In American Sociological
Review, 35:515-524, 1970.

[54] S-Y Lee and Y-M Chiu: “Analysis of Multivariate Polychoric Correlation Models with Incomplete
Data”. In British Journal of Mathematical and Statistical Psychology, 43:145-154, 1990.

[55] J. Lepowski, J. Landis, and S. Stehouwer: “Strategies for the Analysis of Imputed Data From A
Sample Survey: The National Medical Care Utilization and Expenditure Survey”. In Medical Care,
25:705-716, 1987.

[56] R. Little and D. Rubin: Statistical Analysis with Missing Data.  John Wiley & Sons, 1987.
[57] R. Little: “Missing-Data Adjustments in Large Surveys”. In Journal of Business & Economic

Statistics, 6(3), 287-296, 1988.
[58] R. Little: “Regression With Missing X’s: A Review”. In Journal of the American Statistical

Association, 87(420):1227-1237, 1992.
[59] N. Malhorta: “Analyzing Marketing Research Data with Incomplete Information on the Dependent

Variable”. In Journal of Marketing Research, 24:74-84, 1987.
[60] J. Matson, B. Barrett, and J. Mellichamp: “Software Development Cost Estimation Using Function

Points”. In IEEE Transactions on Software Engineering, 20(4), 275-287, 1994.
[61] K. Maxwell, L. Van Wassenhove, and S. Dutta: “Performance Evaluation of General and Company

Specific Models in Software Development Effort Estimation”. In Management Science, 45(6), 1999.
[62] G. Milligan and M. Cooper: “A Study of Standardization of Variables in Cluster Analysis”. In Journal

of Classification, 5:181-204, 1988.
[63] Y. Miyazaki, A. Takanou, H. Nozaki, N. Nakagawa, and K. Okada: “Method to Estimate Parameter

Values in Software Prediction Models”. In Information and Software Technology, 33:239-243, 1991.
[64] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki: “Robust Regression for Developing Software

Estimation Models”. In Journal of Systems and Software, 27:3-16, 1994.
[65] A. Mockus: “Missing Data in Software Engineering”. In K. El Emam and J. Singer (eds.): Empirical

Methods in Software Engineering. The MIT Press (to appear), 2000.
[66] T. Mukhopadhyay and S. Kekre: “Software Effort Models For Early Estimation of Process Control

Applications”. In IEEE Transactions on Software Engineering, 18(10), 915-924, 1992.
[67] A. Myrvold: “Data Analysis for Software Metrics”. In Journal of Systems and Software, 12:271-275,

1990.
[68] J. Nunnally and I. Bernstein: Psychometric Theory. McGraw Hill, 1994.
[69] S. Oligny, P. Bouque, and A. Abran: “An Empirical Assessment of Project Duration Models in

Software Engineering”. In Proceedings of the Eighth European Software Control and Metrics
Conference, 1997.

[70] L. Pickard, B. Kitchenham, and P. Jones: “Comments on: Evaluating Alternative Software
Production Functions”. In IEEE Transactions on Software Engineering, 25(2):282-283, 1999.

[71] S. Rahhal: An Effort Estimation Model for Implementing ISO 9001 in Software Organizations.
Master's Thesis, School of Computer Science, McGill University, October 1995.

[72] S. Rahhal and N. Madhavji: “An Effort Estimation Model for Implementing ISO 9001”. In
Proceedings of the Second IEEE International Software Engineering Standards Symposium, pages
278-286, 1995.

[73] M. Raymond and D. Roberts: “A Comparison of Methods for Treating Incomplete Data in Selection
Research”. In Education and Psychological Measurement, 47:13-26, 1987.

[74] M. Raymond: “Missing Data in Evaluation Research”. In Evaluation & the Health Profession,
9(4):395-420, 1986.

[75] P. Roth: “Missing Data: A Conceptual Review for Applied Psychologists”. In Personnel Psychology,
47:537-560, 1994.

[76] P. Roth and F. Switzer: “A Monte Carlo Analysis of Missing Data Techniques in a HRM Setting”. In
Journal of Management, 21(5), 1003-1023, 1995.

[77] D. Rubin: Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, 1987.
[78] I. Sande: “Hot-Deck Imputation Procedures”. In W. Madow and I. Olkin (eds.): Incomplete Data in

Sample Surveys, Volume 3: Proceedings of the Symposium. Academic Press, 1983.
[79] M. Shepperd and C. Schofield: “Estimating Software Project Effort Using Analogies”. In IEEE

Transactions on Software Engineering, 23(12):736-743, 1997.
[80] S. Siegel and J. Castellan: Nonparametric Statistics for the Behavioral Sciences. McGraw Hill,

1988.



V21 33

[81] P. Spector: “Ratings of Equal and Unequal Response Choice Intervals”. In The Journal of Social
Psychology, 112:115-119, 1980.

[82] K. Srinivasan and D. Fisher: “Machine Learning Approaches to Estimating Software Development
Effort”. In IEEE Transactions on Software Engineering, 21(2):126-137, 1995.

[83] S. Stevens: “Mathematics, Measurement, and Psychophysics”. In S. Stevens (ed.), Handbook of
Experimental Psychology, John Wiley, 1951.

[84] G. Subramanian and S. Breslawski: “Dimensionality Reduction in Software Development Effort
Estimation”.  In Journal of Systems and Software, 21:187-196, 1993.

[85] University of Southern California: COCOMO 2.0 Model User’s Manual. Version 1.1, 1994.
[86] P. Velleman and L. Wilkinson: “Nominal, Ordinal, Interval, and Ratio Typologies Are Misleading”. In

The American Statistician, 47(1), 65-72, 1993.
[87] F. Walkerden and R. Jeffery: “Software Cost Estimation: A Review of Models, Process, and

Practice”. In Advances in Computers, 44:59-125, 1997.
[88] C. Walston and C. Felix: “A Method of Programming Measurement and Estimation”. In IBM Systems

Journal, 1:54-73, 1977.
[89] H. Weisberg: Central Tendency and Variability. Sage Publications, 1992.
[90] C. Wrigley and A. Dexter: “Software Development Estimation Models: A Review and Critique”. In

ASAC 1987 Conference, University of Toronto, 1987.


