
National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Evaluating a Causal Model of
Review Factors in an Industrial
Setting

Oliver Laitenberger, Marek Leszak,
Dieter Stoll, and Khaled El-Emam
December 1999

ERB-1066

Canada NRC 43611

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de Technologie
de l’information

Evaluating a Causal Model of Review Factors in an
Industrial Setting

Oliver Laitenberger, Marek Leszak,
Dieter Stoll, and Khaled El-Emam
December 1999

Copyright 1999 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

- 1 -

 Abstract

Technical reviews are a cost-effective method commonly
used to detect software defects early. To exploit their full
potential, it is necessary to collect measurement data to
constantly monitor and improve the implemented review
procedure. This paper postulates a model of the factors that
affect the number of defects detected during a technical
review, and tests the model empirically using data from a
large software development organization. The data set comes
from more than 300 specification, design, and code reviews
that were performed at Lucent’s Product Realization Center
for Optical Networking (PRC-ON) in Nuernberg, Germany.
Since development projects within PRC-ON usually spend
between 12% and 18% of the total development effort on
reviews, it is essential to understand the relationships among
the factors that determine review success. One major finding
of this study is that the number of detected defects is primarily
determined by the preparation effort of reviewers rather than
the size of the reviewed artifact. In addition, the size of the
reviewed artifact has only limited influence on review effort.
Furthermore, we identified consistent ceiling effects in the
relationship between size and effort with the number of
defects detected. These results suggest that managers at PRC-
ON must consider adequate preparation effort in their review
planning to ensure high quality artifacts as well as a mature
review process.

Keywords: Technical reviews, success factors, path analysis.

1. Introduction

Technical reviews1 are a proven approach that enables the
detection and correction of defects in software artifacts as soon
as these artifacts are created. They not only improve the quality
of the artifacts but also help software development
organizations reduce their cost of producing software. This

stems from the fact that reviews allow the identification of
defects at a stage where they are easier and relatively
inexpensive to correct, thereby causing the development
process to avoid additional rework penalties associated with
defect detection at later test and integration stages.

At Lucent’s Product Realization Center for Optical
Networking (PRC-ON) in Nuernberg, Germany, the review
process is an essential element of the Standard Development
Process (SDP). The review process has been defined based on
worldwide published review processes [9] and the same review
process has been applied to all major large-scale development
projects since 1995.

Today, reviews at PRC-ON usually consume between 12%
and 18% of the total development effort. These costs include
quality assurance (i.e., milestone) reviews as well as technical
reviews on documents, software sources, and other artifacts of
the development process. This makes the case to use the
collected review measurement data to understand and establish

relationships among the factors that determine review
success. A good understanding builds the foundation for
optimizations and improvements of the current review
approach as well as better management of it.

In this paper we postulate a theoretical model that specifies
factors that have an impact on review success at PRC-ON, and
the functional form of these relationships. The factors that we
focus on are those that have been suggested in the literature to
have a strong influence on review success: preparation effort
and the size of the inspected document. Review success is
defined as the number of defects detected during the review.

Our analysis is based on data from more than 300
specification, design, and code reviews performed at PRC-ON.
This affords us the opportunity to identify consistent
relationships across different types of reviews, unlike previous
research which focused largely on code reviews only, e.g., [5]
[16]. Failure of the model to fit the collected data results in its
falsification in this environment, while a good fit allows the
model to survive, but not be proven, since other models might
provide equal or better fits.

1. Other terms such as formal technical review or software
inspection could have been used here.

Evaluating a Causal Model of Review Factors in an Industrial Setting
Oliver Laitenberger

Fraunhofer Institute for
Experimental Software Engineering

Sauerwiesen 6
D-67661 Kaiserslautern

Germany
laiten@iese.fhg.de

Marek Leszak, Dieter Stoll
Lucent Technologies Network

Systems GmbH
Thurn-und-Taxis-Strasse 10

D-90411 Nuernberg
Germany

{mleszak, dieterstoll}@lucent.com

Khaled El Emam
National Research Council,

Institute for Information
Technology, Building M-50,

Montreal Road, Ottawa Ontario
Canada K1A OR6

Khaled.El-Emam@iit.nrc.ca

- 2 -

Briefly, our results indicate that artifact size has only
limited influence on both preparation effort of reviewers and
the number of detected defects. It is rather the effort spent for
preparation that is found to be a more significant factor
influencing the number of detected defects. Furthermore, we
identified consistent ceiling effects in the relationship
between size and effort with the number of defects detected.
The consistency of these results across different artifact types
has not been reported previously.

The paper is organized as follows. Section 2 elaborates in
more detail the theoretical model we distilled from the liter-
ature. Section 3 presents the research method. The presenta-
tion includes a discussion of the Lucent environment, the
review process at Lucent, and the measurement procedure,
and the analysis techniques. Section 4 illustrates the data
analysis effort and its results. Section 5 briefly discusses the
findings. Finally, Section 6 concludes with a summary and
directions for future work.

2. Background

2.1 Motivation

As a discipline matures, empirical work should be
performed to investigate the veracity of postulated
theoretical models. A theoretical model provides one or more
hypothetical predictions that may be tested by collected data.
Testing a theoretical model is particularly beneficial for the
investigation of software reviews due to the following three
reasons. First, practitioners as well as researchers gain insight
into the main factors influencing review success. This insight
can and should be the foundation as well as the trigger for
improvement activities. Second, the models offer researchers
the unique opportunity to integrate their own work into a
broader context and to highlight his or her methodological or
empirical contribution in a systematic manner. Finally, in the
long run, the constant refinement of those models allows a
systematic accumulation of knowledge, which makes
technical reviews an even more effective approach for
overcoming software quality deficiencies and cost overruns.

For the development of theoretical models for review
success, a researcher must keep in mind that the most
successful review approach is the one that helps to find most
of the defects in the reviewed artifact and has an optimal cost/
benefit ratio1. For both purposes, the number of detected
defects is one of the key measures. But it needs to be
interpreted in a meaningful way because a high number of

defects may either indicate highly effective reviews or high
defect injections. A low number of defects, on the other hand,
may indicate poor reviews or a high maturity of the software
development organization. If further variables are measured
and the variables are looked at together within the context of
a theoretical model, we can extract useful information for
review improvement.

Although there might be a limitless number of factors that
induce variations on the number of defects, the body of
existing review work has in general revealed two major ones:
Preparation effort and size of the reviewed artifact. However,
the many empirical findings, such as the ones consolidated in
[12], have rarely been investigated in the context of a
theoretical model. An exception is Porter et al.’s work [16].
They present a cause-and-effect diagram of the review
process as a starting point for understanding the sources of
variations in code reviews within one particular development
project. They focused their attention on three factors, that is,
reviewers, authors, and code units, which they found to be
significant. Moreover, they stated that “further investigation
is needed to quantify the effect of preparation time on defects
found as well as the effect of defects found on preparation
time”. This will be examined as part of our study. Hence, we
elaborated on elements of Porter et. al’s model and present
some further results.

2.2 A Theoretical Model for Explaining the
Number of Detected Defects

The number of detected defects can be modeled in the
form of a path diagram [15] as presented in Figure 1.

Figure 1: Path Diagram For Explaining Defects

An arrow linking a given pair of variables (X,Y) indicates
the assumption about a direct causal link between these
variables. Hence, it must be interpreted as a hypothetical
statement of the form “an increase in X is expected to produce
(cause) an increase in Y”. The terms e1 and e2 represent error
terms of the model. We have to state that this does not imply
that the relationships are necessarily linear and additive.
Once data are available, it is one purpose of the analysis effort
to determine the optimal functional shape.

1. A third criteria according to Votta is the duration of a
review [24]. However, this criteria is not considered in
this study.

Preparation
Effort

e1

Number of
Defects

e2

Size

- 3 -

The hypothetical model in Figure 1 can be explained in the
following manner:

Hypothesis H1: The larger the effort for defect detection
(i.e., the preparation effort) the more defects are detected.

We assume here that preparation effort is an important
factor on the number of defects detected. Preparation effort
is the effort the reviewers individually spend for scrutinizing
the artifacts for defects. The relationship between review
effort and number of defects is due to the effect of more
reviewers inspecting a document (the more reviewers the
more defects are found), and also due to the increased effort
spent by the reviewers looking for defects. We examine each
of these in turn.

We make the assumption that all reviewers have the same
probability, , of detecting a defect. This assumption is not
necessary and our inferences will still hold otherwise,
however it does lend itself to algebraic simplicity.

The probability for a review team with reviewers of
finding a defect is given by:

(eq. 1)

For example, for the probability for a reviewer of
finding a defect is and of not finding a defect is . The
probability of either reviewer finding a defect or both finding
a defect is given by

 (eq. 2)

which is the equation that we have above. Let us say that
, then the plot of the probability of the review team

detecting a defect against the number of reviewers is shown
in Figure 2.

Figure 2: Defect Detection Probability against the
Number of Reviewers

As can be seen from the plot, the probability of defect
detection would increase as the number of reviewers
increases, but there is a ceiling effect. There comes a point
were the addition of more reviewers will lead to relatively

less defects being detected.

The stated relationship for individual reviewer effort can
be explained by the fact that more effort allows for a better
understanding of the reviewed artifact, which directly
translates to more detected defects. However, we assume a
ceiling effect, i.e, the number of detected defects levels off
after a certain amount of effort has been spent for preparation.
The ceiling effect may be explained by the following three
reasons. First, after a certain amount of effort expended, we
would expect the reviewers to get tired, and even if they spend
further effort, they will not be able to find many more defects.
Second, other project goals, such as important deadlines and
the resulting time pressure, are perceived more important and
may set a natural threshold for the preparation effort of
reviewers. And third, defects detected later in the preparation
process are usually more difficult to detect. Hence, more
effort must be invested for their detection.

The validity of the hypothetical individual effort
relationship has been observed several times in practice.
Porter et. al [19] investigated code reviews and found that
individual preparation has a significant impact on the number
of detected defects. This led them to conclude that better
preparation techniques (i.e., reading techniques [1]) rather
than review process variations may significantly improve
current review implementations [18]. Christenson et. al state
that effective code reviews were those that met the
recommended preparation effort [5]. Raz and Young
corroborated this finding for design and code reviews [19].
They found reviews without sufficient preparation to be not
fully effective.

The hypothesis, however, makes the assumption that
defect detection is more an individual than a group activity.
We are aware that the organization of the defect detection
activity of reviews is still debated in the literature. More
specifically, the issue is whether defect detection is more an
individual activity and hence should be performed
individually, or whether defect detection is a group activity
and should therefore be conducted as part of a group meeting.
Following Fagan’s approach [8] a group meeting provides a
synergy effect. This leads to the assumption that group
meetings help detect more defects. In this case one must
rather consider the preparation effort and the meeting effort.
A causal model to explain the latter can be found in [22].
However, others found little synergy in a meeting-based
organization [24]. They rather point out that individual
preparation is key. Following this argumentation, a group
meeting does not necessarily help detect more defects. Since
we observed the latter at PRC-ON, we focus on preparation
effort in this study.

Hypothesis H2: The larger the size of a reviewed artifact,
the more defects are detected in its review.

We assume here that the size of the reviewed artifact is a

p

k

k

i 
  p

i
1 p)k i–

–

i 1=

k

∑

k 2=
p 1 p–

p 1-p() 1-p()p p
2

++

p 0.4=

- 4 -

second crucial factor for the number of defects found. The
rationale behind this relationship is that larger artifacts are
expected to be more complex and due to their size, create
more opportunities for defects to be introduced. Therefore a
relationship between size and the number of defects is
anticipated. However, despite any conventional wisdom, a
ceiling effect can also be observed in this relationship.
Empirical evidence implies that larger artifacts are
proportionally less defect-prone than smaller ones. Les
Hatton describes several empirical studies in which this
effect could be observed [10]. Moreover, Kelly et al. state that
increasing the number of pages at one time decreases the
number of defects found [11]. Christenson et. al
demonstrated the variance of the defect density to be
inversely proportional to the size of the unit of code [4]1. Yet,
most of these findings are limited to code artifacts and its an
open question whether they scale up to artifacts produced
early in the life cycle, such as specification or design
documents.

Hypothesis H3: The larger the size of a reviewed artifact,
the more preparation effort is spend.

We assume here that the preparation effort is primarily
determined by the size of the reviewed artifacts. A
relationship between size and effort is expected for two
reasons. First, whenever a larger document is being reviewed
there is a tendency to assign more reviewers to work on it, and
hence the effort will increase. But also, at the individual level,
we would expect that a larger document would take longer to
review since the information content is larger.

Again we would expect a ceiling effect for which fatigue
effects and the loss of motivation are possible explanations.
Because of the ceiling effect larger artifacts may tend to
receive proportionally less preparation effort than small ones
(with its detrimental effect on the number of detected
defects). The latter has been reported, for example, by
Christenson et al. [5].

3. Research Method

This section describes the research context at PRC-ON as
well as the measurement, data collection, and data validation
approach. Finally, it presents our analysis method.

3.1 Development Environment

The basic workflow around the review process at PRC-
ON is depicted in Figure 3. The standard development

process (SDP) requires certain reviews in certain stages of a
development project. All artifacts and their quality checking
activities (reviews, testing) must be planned and scheduled
by the respective teamleader in charge of developing a
subsystem. Once a deliverable is ready (from a developer’ s
point of view), the teamleader delegates review control to a
qualified moderator. The moderator is responsible for the
selection of the right mix of experts for a review team, and for
the success and performance of a review.

There are no guidelines at PRC-ON on how many
reviewers to invite to a review. Hence, the number of
reviewers is determined by the availability of people, project
constraints, and the reviewed artifact itself. The reviewers
themselves usually have a high level of experience and can
be considered experts for the reviewed artifact. They do not
use any particular reading technique as suggested in [1].

Apart from the moderator role, other roles in the review
process are

• recorder - records defects in the defect list.

• checker - verifies correctness and completeness of the
reworked artifact after the review meeting,

• reviewer - probes the artifact for defects and reports
them in the review meeting. The author or the moderator
may also act as a reviewer.

The review process itself is defined in a number of
standard phases, i.e., planning, kick-off and overview,
preparation (of reviewers), defect logging in a group
meeting, rework, and checking.

The review process is mandatory for all newly developed
and significantly changed artifacts. However, since all
changes must be guarded by modification requests (MRs),
not every small change triggers a review.

3.2 Measurement

The metrics that are collected in software component
reviews at PRC-ON are review type, effort, size, defects, and
the number of reviewers. These can be characterized as
follows:

• Type of review: Component specification reviews,
component design reviews, or code reviews.

• Size of reviewed artifact - measured in document
pages or noncommentary source lines (NCSL).

1. However, Christenson et. al’s findings need to be inter-
preted carefully since they used the size variable on
both sides of the equation.

- 5 -

• Preparation effort of all reviewers

• Meeting effort (for the kick-off and the review
meeting)

• Number of reported defects. Although a distinction
is made in major and minor defects, we focus in this
study on the total number of defects. This stems from
the fact that we want to determine the influential
factors on review success rather than perform a cost/
benefit analysis for reviews in which a distinction
according to defect criticality is helpful. Moreover,
minor defects were found to also provide a
contribution towards higher quality [23].

• Number of reviewers for a review team

Data on these attributes are the information available that can
be used to validate the theoretical model stated in Section 2.

3.3 Data Collection Procedure

For large-scale system development, the implemented
review procedure can only be monitored and controlled if
adequate tool support is available. Hence, tool support for the
administrative part of technical reviews is provided. The tool
is called QADM [13]. QADM is a GUI-based tool that

• supports review planning, recording and tracking.

• maintains all data collected during reviews, by keeping a
review database.

• allows for the collection of review measures and the
generation as well as the visualization of initial analysis
results. Hence, it stores all information produced during a
review - except the so-called defect list. Only the number
of defects is stored in QADM, not the detailed description
of each defect. The defect list is fed into the electronic
review minutes later or is archived as manual record in a
central repository.

Review

Review
Planning

Development
Project

Doc
Management

Review
Details

Open Issue
List

Defect
List

SDP

Artifact

Review
Data

Modification
Management

review
checklist

other input
documents

milestones
M1, M2,..., M5

make techn. reviews
(specification, design, code

schedule reviews

check-in,
check-out,
publish

create MR,
submit MR

MR on other
deliverable

Figure 3: The Review Procedure at PRC-ON

- 6 -

• allows for powerful and efficient searches through the
review database.

• generates review-based quality records (e.g., for ISO 9001
certification).

3.4 Data Validation

For any kind of analysis effort, the quality of data is
essential - otherwise the 'junk-in / junk-out' syndrome
prevents researchers and practitioners from getting any
meaningful result. At PRC-ON, one member of the review
team enters the data in QADM. Since self-reported data are
at a higher risk of containing errors, we performed an
extensive validation of the entered review data to detect and
remove missing, incorrect, and inconsistent entries. In cases
where we could not clarify seemingly inaccurate entries, we
decided to remove them. After data validation 340 entries
remained for analysis (i.e. data from 145 specification
reviews, 94 design reviews, and 101 code reviews).

3.5 Path Analysis

The method that we employ to test the described
theoretical model is path analysis [15], [20]. This method
allows us to depict the whole model on one diagram and to
compute direct and indirect effects of the variables.

The path coefficients in the model are derived using
ordinary least squares regression analysis [2], [6]. We use
logarithmic transformation due to our expectations of ceiling
effects. Mathematically, such a relationship between two
variables A and B would be expressed as:

A = α ∗ Ββ (eq. 3)

where 0 < β < 1. To examine this model with ordinary least
squares regression, logarithmic transformations can be
performed on each side of the regression equation to obtain
the following linear model:

ln(A)=ln(α)+β*ln (Β) (eq. 4)

This is the approach of choice for our analysis. The path
coefficients we consider for our theoretical model are the beta
coefficients of the regression analysis. Beta coefficients
indicate the average standard deviation change in the
dependent variable with a standard deviation change in one
independent variable, when others are held constant. The use
of standardized coefficients allows the comparison of the
magnitude of relationships. Following standard procedures,
we used statistical significance testing with a significance
threshold (alpha level) of 0.01 to determine whether a
variable is statistically significant.

The path model that we test is depicted in Figure 1. The e

values are the residual terms. The larger these values are the
more variation on that variable that is not explained by the
model. The errors are calculated as .

The fact that we test the model for reviews in three phases
of the life cycle allows us to check for consistency in the
model. If the results are consistent then we would be able to
generalize further our understanding of software reviews
(note that in previous work researchers commonly focus on
reviews within a single phase).

4. Data Analysis

We start the analysis effort with an exploratory analysis
using descriptive techniques to gain some initial insights into
the data. We look at the various review types and compared
them with already existing findings from the review
literature. Then we present the results of the path analysis.

4.1 Descriptive Statistics

4.1.1 Number of detected defects

Figure 4 depicts the number of defects that are detected in
the different types of reviews. The box represents the
interquartile range (i.e., 50% of all observations fall within
this range), while the whiskers represent the minimum and
maximum value.

As Figure 4 shows, defect distribution is consistent among
review types. The median value of a specification, design,
and code review is 12, 15, 14, respectively. While the
interquartile range of specification reviews and design
reviews is 21 defects, it is slightly lower for code reviews (17
defects).

Figure 4: Number of Detected Defects

The presented findings establish an organization-specific
baseline for PRC-ON against which to compare any
improvement that promises to increase the number of defects
detected. However, an evaluation in the context of other

1 R
2

–

Max
Min

75%
25%

Median

Review Type

N
um

be
r

of
 D

ef
ec

ts

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Specification Design Code

- 7 -

review work is difficult because most studies only focus on
code reviews and often do not present the number of defects
found, but rather some summary statistics [21] [25].

4.1.2 Review Effort

Figure 5 shows the preparation effort distribution as well
as the distribution of the total effort spent on reviewing the
various artifacts. The total effort includes the preparation as
well as the meeting effort of all review participants.

Figure 5 reveals that reviewers involved in any kind of
review usually spend between 2 and 8 hours for preparation
(independent of the number of reviewers) and between 4 and
14 hours for the total review. The effort distribution looks
similar for the different types of reviews.

The results show that the review of artifacts in early phases
(i.e., specifications) does not significantly consume more
effort than code artifacts. The median effort for specification,
design, and code reviews (7, 6, 8 person hours) as well as the
upper quartile ranges (11, 10, 13 person hours) provide a
lower threshold for managers on how much effort the review
of a particular artifact type may at least consume in future
projects.

Figure 5: Review Effort

In this study we focus on preparation effort as an important
parameter to optimize. Figure 6 depicts the relationship of
preparation versus meeting effort. It shows that most of the
reviews consume at least as much effort in preparation than
in the meeting. Surprisingly, the preparation/meeting-ratio is
highest for code reviews. This may be explained by the
following two reasons. First, the reviewers do not spend as
much effort for the preparation of design or specification
reviews. And second, the meetings for specification and
design are more effort consuming since the discussion of
defects detected takes longer.

Figure 6: Relationship of Preparation Effort and
Meeting Effort

4.1.3 Size

The unit of size for specification and design artifacts is
pages whereas for code artifacts, it is noncommentary source
lines of code. Since the measurement units are different for
specification/design documents and code components, we
present two graphs. Figure 7 exhibits the size distribution
across the reviewed artifact types.

Figure 7: Size of Reviewed Artifacts

Figure 7 reveals that the median size of a specification is
24 pages, whereas it is 22.5 pages for design artifacts. Most
of the reviewed documents are smaller than 50 pages. The
median size for code components is 1450 NCSL and most of
the reviewed code components are lower than 3420 NCSL.
Documents of this size are neither too large nor too small for
review and are within the range of the ones reported in other
studies [9].

4.1.4 Number of Reviewers

In addition to defect, size, and effort distribution, we also

Review Type

E
ffo

rt
 [p

er
so

n
ho

ur
]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Specification Design Code

Preparation Effort

Total Effort

Max
Min

75%
25%

Median

Type of Review

P
re

p
a

ra
tio

n
 E

ffo
rt

/M
e

e
tin

g
 E

ffo
rt

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Specification Design Code

Max
Min

75%
25%

Median

Type of Review

S
iz

e
[p

ag
es

]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

Specification Desing

Max
Min

75%
25%

Median

Type of Review

S
iz

e
[N

C
S

L]

-1000

1000

3000

5000

7000

9000

11000

Code

- 8 -

investigated the number of reviewers. Figure 8 shows how
many reviews have been performed for each artifact type
with a specific number of reviewers.

Figure 8: Histogram of the Number of Reviewers for
the Different Types of Reviews

According to Figure 8, most of the reviews were
performed with 3 reviewers. Specification reviews often
involve a higher number of reviewers. This emphasizes the
importance of the specification phase for design and coding.

The optimal number of reviewers is still debated in the
literature. This debate boils down to the question whether
involving more reviewers helps detect more defects.
Surprisingly, there are few consistent results so far. Weller
presents some data from a field study using three to four
reviewers [25]. Madachy presents data showing that the
optimal size is between three and five people [14]. Bourgeois
corroborates these results in a different study [3]. Porter et
al.’s recent experimental results, however, suggest that
reducing the number of reviewers from 4 to 2 may
significantly reduce effort without increasing review interval
or reducing effectiveness [17].

4.1.5 Defect Density

Since we assumed that the number of defects is related to
the size of the document, we calculated the defect density
defined as defects per unit of size. Figure 9 shows the result
of this calculation.

Reviews exhibit on average 0.53 defects/page when
looking at specification reviews. Design reviews exhibits
0.58 defects/page. Finally, code reviews find 7.0 defects/
KNCSL. The variation seems to be small.

Figure 9: Defect Density

For specification and design artifacts, we did not find
comparable figures in the literature. For code artifacts,
however, the defect densities are within the reported range of
other telecom organizations. Ebert et. al. describe some
results from Alcatel Telecom [7]. There, code components
exhibit an average defect density of 9 defects/KNCSL. This
result supports the initial statement that the review process
for code components at PRC-ON belongs to the state of the
practice that can be found in the software industry.

4.2 Path Analysis Results

We used regression analysis to investigate the
hypothesized model presented in Section 2 and report the
beta coefficient. A star indicates whether a beta coefficient is
statistically significant.

4.2.1 Specification Reviews

Figure 10 depicts the model for specification reviews. The
total effect of size on defects (direct and indirect) is 0.24
(=0.17*0.77+0.11). This value is lower than the direct effect
of preparation effort on defects. This shows that preparation
effort has a larger impact on the number of defects than size.

Figure 10: Path Diagram for Specification Reviews

Max
Min

75%
25%

Median

Type of Review

D
ef

ec
t D

en
si

ty
 [d

ef
ec

ts
/K

N
S

LC
]

-5

5

15

25

35

45

55

Code

Max
Min

75%
25%

Median

Type of Review

D
ef

ec
t D

en
si

ty
 [d

ef
ec

ts
/p

ag
e]

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

1 2

Preparation
Effort

Number of
Defects

Size

0.17*

0.99 0.76

0.11*

0.77*

- 9 -

4.2.2 Design Reviews

Figure 11 shows the path model for design reviews. The
total effect of size on defects (direct and indirect) is 0.52,
which is slightly below the value of preparation effort on the
number of defects.

Figure 11: Path Diagram for Design Reviews

4.2.3 Code Reviews

Figure 12 reveals the model for code reviews. The total
effect size of size on defects (direct and indirect) is 0.29.
Again preparation effort has a larger impact on the number of
defects than size. Moreover, size was found not to be a
statistically significant factor for the number of defects
detected in code reviews.

Figure 12: Path Diagram for Code Reviews

4.2.4 Post-hoc Analysis

We also calculated the relationship of preparation effort
per reviewer and the number of defects. The results are shown
in Table1.

The results are comparable to the ones we obtain by using
the total preparation effort. All path coefficients remain
statistically significant. Although this finding shows the
importance of preparation we cannot derive whether more
reviewers directly pay off in more detected defects or
whether the chosen reviewers just need to spend more effort
for preparation.

4.2.5 Ceiling Effects

We identified ceiling effects for all the relationships that
we investigated across all types of reviews. One can interpret
this as stating that additional reviewers and/or individual
reviewers expending more effort on preparation reaches a
plateau, after which the returns in defect detection diminish.
This does not necessarily mean that, for example, many
reviewers should not be used (especially if reliability is a high
concern), only that this may not be cost effective, and
alternative defect detection techniques ought to be
investigated.

Furthermore, increasing the size of an artifact results in
increased effort up to a certain point, and then the relationship
plateaus. This can be an indicator of either that the
organization caps the number of reviewers and/or a fatigue
effect. Based on our knowledge of the review process,
however, the former interpretation is not satisfactory, and
therefore, it would seem that there exists a fatigue effect.

5. Discussion

We found evidence supporting the model proposed here
and the evidence was consistent for code, design, and
specification reviews. Furthermore, we identified a
theoretically justifiable functional form for all of the
hypothesized relationships.

Our findings suggest that an organization ought to pay
attention to preparation effort as a means of controlling the
number of defects detected during reviews, and that adding
reviewers and increasing preparation effort may not be cost
effective since there exists a ceiling effect.

The results here, however, also suggest avenues for
further investigation to better understand the mechanisms

Preparation
Effort

Number of
Defects

Size

0.49*

0.87 0.87

0.26*

0.53*

Preparation
Effort

Number of
Defects

Size

0.287*

0.96 0.93

0.13

0.56*

β R2

Specification 0.70* 0.49

Design 0.64* 0.42

Code 0.52* 0.29

 Table 1: Preparation Effort per Reviewer versus Size

- 10 -

that are operating during software reviews. For example, it
would be informative to determine whether it is team size or
individual preparation effort that is contributing to an
increased number of defects detected.

Furthermore, the residual terms remain quite large for all
of the three types of reviews. This suggests the existence of
more variables that ought to be included to better understand
the factors that affect defect detection in software reviews.

A primary candidate that may explain a large amount of
variation in the data set is a classification of reviews
according to the status of the artifact under review. It is
plausible that a review of a newly developed artifact exhibits
a different relationships among factors than an artifact that
underwent a minor or major modification.

Characteristics of the structure of reviewed artifacts, such
as measures of coupling and ambiguity, may be another factor
to explain some of the observed variation.

6. Conclusion

Technical reviews are considered one of the most effective
methods for software quality improvement. To exploit their
full potential, they need to be constantly monitored and opti-
mized. In this paper, we presented an a path analysis to better
understand review success factors. We found preparation
effort is a more influential factor on the number of defects
detected than artifact size. Hence spending enough effort for
preparation directly results in more detected defects.

Apart from more insight into the causal relationships, the
findings presented in this paper provide a baseline against
which to compare changes to the review process. So far, the
review meeting at PRC-ON is conducted as a so-called ‘face-
to-face meeting’, by default. Due to the increasing integration
of PRC-ON into international development activities, some
reviewers are connected by means of a telephone conferenc-
ing system to participate in the review meeting. Since a
review object may be made accessible through the world-
wide Lucent Intranet, the cost-effectiveness of a single
review does not seem to be affected by such ’distributed
reviews’. However, since meetings in general represent a
major cost factor for reviews, non-meeting based approaches
are a fruitful area for further investigation.

Finally the chosen analysis strategy based on path analysis
was appealing because it allows for a systematic testing of a
theoretical model, which in turn allows one to integrate
existing work in a unified framework. Other researchers may
use the model to drive their analysis. This kind of strategy
allows the software engineering community to build theories
on when and under which conditions software reviews are
most beneficial.

7. References

[1] Victor R. Basili. Evolving and Packaging Reading
Technologies. Journal of Systems and Software, 38(1), July
1997.

[2] W. D. Berry and S. Feldman. Multiple regression in practice.
Sage Publication, 1985.

[3] Karen V. Bourgeois. Process Insights from a Large-Scale
Software Inspections Data Analysis. Cross Talk, The Journal
of Defense Software Engineering, 17–23, oct. 1996.

[4] D. A. Christenson and s. T. Huang. Code inspection
management using statistical control limits. In Proceedings
of the National Communication Forum, volume 41, 1095–
1100, 1987.

[5] Dennis A. Christenson, Huang T. Steel, and Alfred J.
Lamperez. Statistical quality control applied to code
inspections. IEEE Journal Selected Areas in
Communication, 8(2):196–200, February 1990.

[6] Jacob Cohen and Patricia Cohen. Applied Multiple
Regression/Correlation Analysis for the Behavioral
Sciences. Lawrence Erlbaum Associates, Inc., Publishers,
1983.

[7] Christof Ebert, Thomas Liedtke, and Ekkehard Baisch.
Software Measurement - Current Trends in Research and
Practice, chapter Improving Reliability of Large Software
Systems, 209–228. Deutscher Universitaets Verlag, Gabler
Edition Wissenschaft edition, 1999.

[8] M. E. Fagan. Design and Code Inspections to Reduce Errors
in Program Development. IBM Systems Journal, 15(3):182–
211, 1976.

[9] Tom Gilb and Dorothy Graham. Software Inspection.
Addison-Wesley Publishing Company, 1993.

[10] Les Hatton. N–version design versus one good version. IEEE
Software, 14(6):71–76, 1997.

[11] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An
analysis of defect densities found during software
inspections. Journal of Systems and Software, 17:111–117,
1992.

[12] Oliver Laitenberger and Jean-Marc DeBaud. An
Encompassing Life-Cycle Centric Survey of Software
Inspection. Technical Report of the International Software
Engineering Research Network, ISERN-98-32, Fraunhofer
Institute for Experimental Software Engineering, Germany,
1998. Accepted for Publication in the Journal of Systems and
Software, 2000.

[13] M. Leszak and W. Kammerer. Review Process Improvement
in Transmission Network Development. In Proceedings of
the First Conference on Quality Engineering in Software
Technology, 20–28, 1997.

[14] Ray Madachy, Linda Little, and Sylvia Fan. Analysis of a
successful Inspection Program. In 18th Ann. NASA Software
Eng. Laboratory Workshop, 176–198. NASA, November
1993.

[15] Elazar J. Pedhazur. Multiple Regression in Behavioral
Research. Hartcourt Brace College Publishers, second
edition, 1982.

- 11 -

[16] Adam A. Porter, Harvey Siy, Audris Mockus, and Lawrence
Votta. Understanding the Sources of Variation in Software
Inspections. ACM Transactions on Software Engineering
and Methodology, 7(1):41–79, January 1998.

[17] Adam A. Porter, Harvey P. Siy, Carl A. Toman, and
Lawrence G. Votta. An Experiment to Assess the Cost-
Benefits of Code Inspections in Large Scale Software
Development. IEEE Transactions on Software Engineering,
23(6):329–346, June 1997.

[18] Adam A. Porter and Lawrence G. Votta. What Makes
Inspections Work? IEEE Software, 99–102, November 1997.

[19] Tzvi Raz and Alan T. Yaung. Factors affecting design
inspection effectiveness in software development.
Information and Software Technology, 39:297–305, 1997.

[20] R. Retherford and M-K. Choe. Statistical Models for Causal
Analysis. John Wiley & Sons Inc, 1993.

[21] Glen W. Russell. Experience with Inspection in Ultralarge-
Scale Developments. IEEE Software, 8(1):25–31, January
1991.

[22] C. B. Seamann and V.R. Basili. Communication and
Organization: An Empirical Study of Discussion in
Inspection Meeting. In IEEE Transactions on Software
Engineering, 24(7):559-572, July 1998.

