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Abstract

Contemporary evidence suggests that most field faults in software applications are found in a small
percentage of the software’s components.  This means that if these faulty software components can be
detected early in the development project’s life cycle, mitigating actions can be taken, such as a
redesign.  For object-oriented applications, prediction models using design metrics can be used to
identify faulty classes early on.  In this paper we report on a study that used object-oriented design
metrics to construct such prediction models.  The study used data collected from one version of a
commercial Java application for constructing a prediction model.  The model was then validated on a
subsequent release of the same application.  Our results indicate that the prediction model has a high
accuracy.  Furthermore, we found that an export coupling metric had the strongest association with fault-
proneness, indicating a structural feature that may be symptomatic of a class with a high probability of
latent faults.

1 Introduction
Recent evidence indicates that most faults in software applications are found in only a few of a system’s

components (Fenton and Ohlsson, 2000; Kaaniche and Kanoun, 1996; Moller and Paulish, 1993;

Ohlsson and Alberg, 1996). The early identification of these components allows an organization to take

mitigating actions, such as focus defect detection activities on high risk components, for example by

optimally allocating testing resources (Harrison, 1988), or redesigning components that are likely to cause

field failures.

In the realm of object-oriented systems, one approach to identify faulty classes early in development is to

construct prediction models using object-oriented design metrics.  Such models are developed using

historical data, and can then be applied for identifying potentially faulty-classes in future applications or

future releases.  The usage of design metrics allows the organization to take mitigating actions early and

consequently avoid costly rework.

A considerable number of object-oriented metrics have been constructed in the past, for example, (Abreu

and Carapuca, 1994; Benlarbi and Melo, 1999; Briand et al., 1997; Cartwright and Shepperd, 2000;

Chidamber and Kemerer, 1994; Henderson-Sellers, 1996; Li and Henry, 1993; Lorenz and Kidd, 1994;

Tang et al., 1999).  There have also been empirical studies validating object-oriented metrics and

constructing prediction models that utilize them, such as (Abreu and Melo, 1996; Basili et al., 1996;
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Benlarbi and Melo, 1999; Binkley and Schach, 1998; Briand et al., 1997; Briand et al., 1998b; Briand et

al., 2000; Cartwright and Shepperd, 2000; Chidamber et al., 1998; Harrison et al., 1998; Li and Henry,

1993; Melo et al., 1999; Nesi and Querci, 1998; Tang et al., 1999).  However, most of these studies did

not focus exclusively on metrics that can be collected during the design stage.

In this paper we report on a study that was performed to construct a model to predict which classes in a

future release of a commercial Java application will be faulty.  In addition to identifying the faulty classes,

the model can be applied to give an overall quality estimate (i.e., how many classes in the future release

will likely have a fault in them).  The model uses only object-oriented design metrics.  Our empirical

validation results indicate that the model has high accuracy in identifying which classes will be faulty and

in predicting the overall quality level.

Furthermore, our results show that the most useful predictors of class fault-proneness are a metric

measuring inheritance depth and a metric measuring export coupling, with export coupling having a

dominating effect.  These results are consistent with a previous study on a C++ telecommunications

system, which found that export coupling was strongly associated with fault-proneness (El-Emam et al.,

1999).

The paper is organized as follows.  In the next section we provide an overview of the object-oriented

metrics that we evaluate, and our hypotheses. In Section 3 we present our research method, and in

Section 4 the detailed results, their implications, and limitations. We conclude the paper in Section 5 with

a summary and directions for future research.

2 Background
2.1 Metrics Studied
Our focus in this study are the two metrics sets defined by Chidamber and Kemerer (Chidamber and

Kemerer, 1994) and Briand et al. (Briand et al., 1997).  In combination these constitute 24 metrics.  Of

these, only a subset can be reliably collected during the design stage of a project.  This subset includes

inheritance and coupling metrics (and excludes cohesion and traditional complexity metrics).

At the design stage it is common to have defined the classes, the inheritance hierarchy showing the

parent-child relationships amongst the classes, identified the methods and their parameters for each

class, and the attributes within each class and their types.  Detailed information that is commonly

available within the definition of a method, for example, which methods from other classes are invoked,

would not be available at design time. The cohesion metrics defined in these metrics suites were not

collected for the same reason.  This leaves us with a total of 10 design metrics that can be collected, two

defined by Chidamber and Kemerer (Chidamber and Kemerer, 1994), and eight by Briand et al. (Briand et

al., 1997).
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The two Chidamber and Kemerer metrics are DIT and NOC. The Depth of Inheritance Tree (Chidamber

and Kemerer, 1994) metric is defined as the length of the longest path from the class to the root in the

inheritance hierarchy.  It is stated that as one goes further down the class hierarchy the more complex a

class becomes, and hence more fault-prone. The Number of Children inheritance metric (Chidamber and

Kemerer, 1994) counts the number of classes which inherit from a particular class (i.e., the number of

classes in the inheritance tree down from a class).

The Briand et al. coupling metrics are counts of interactions amongst classes (Briand et al., 1997). The

metrics distinguish the types of relationships amongst the classes (i.e., friendship, inheritance, or another

type of relationship), different types of interactions, and the locus of impact of the interaction.  The

acronyms for the metrics indicate what types of interactions are counted. We define below the acronyms

and their meaning, and then summarize the design metrics.

•  The first two letters indicate the relationship (A: coupling to ancestor classes; D: Descendents; and O:

other, i.e., none of the above).  Although the Briand et al. metrics suite covers it, friendship is not

applicable in our case since the language used for the system we analyze is Java.

•  The next two letters indicate the type of interaction between classes c and d (CA: there is a class-

attribute interaction between classes c and d if c has an attribute of type d; and CM: there is a class-

method interaction between classes c and d if class c has a method with a parameter of type class d).

There is a method-method interaction between classes c and d if c invokes a method of d, or if a

method of class d is passed as a parameter to a method of class c. Method-method interactions are

typically not available at design time, however. 1

•  The last two letters indicate the locus of impact (IC: Import Coupling; and EC: Export Coupling). A

class c exhibits import coupling if it is the using class (i.e., client in a client-server relationship), while

it exhibits export coupling if is the used class (i.e., the server in a client-server relationship).

Ancestor-based coupling metrics that we considered were: ACAIC and ACMIC.  The descendent-based

coupling metrics that we considered were: DCAEC and DCMEC.  The remaining coupling metrics cover

the four combinations of type of interaction and locus of impact: OCAIC, OCAEC, OCMIC, and OCMEC.

2.2 Hypotheses
An articulation of a theoretical basis for developing quantitative models relating object-oriented metrics

and external quality metrics has been provided in (Briand et al., 1998b), and is summarized in Figure 1.

This illustrates that we hypothesise a relationship between the object-oriented metrics and fault-

proneness due to the effect on cognitive complexity.

                                                          
1 According to the mapping between the development phases of a generic object-oriented development process and coupling
metrics in (Briand et al., 1999a), metrics that count method-method interactions can be approximated during low level design, but
are only stable at the implementation stage.  Methods that count class-attribute and class-method interactions can be approximated
during the analysis phase, but are stable before implementation.
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Figure 1: Theoretical basis for the development of object oriented product metrics.

There, it is hypothesized that the structural properties of a software component (such as its coupling)

have an impact on its cognitive complexity.  Cognitive complexity is defined as the mental burden of the

individuals who have to deal with the component, for example, the developers, testers, inspectors, and

maintainers.  High cognitive complexity leads to a component exhibiting undesirable external qualities,

such as increased fault-proneness and reduced maintainability.

Therefore, our general hypothesis is that the metrics that we validate, and that were described above, are

positively associated with the fault-proneness of classes.  This means that higher values on these metrics

represent structural properties that increase the probability that a class will have a fault that causes a field

failure.

3 Research Method
3.1 Data Source and Measurement
The system that was analyzed is a commercial Java application.  The application implements a word

processor that can either be used stand-alone or embedded as a component within other larger

applications.  The word processor provides support for formatted text at the word, paragraph, and

document levels, allows the definition of groupings of formatting elements as styles, supports RTF and

HTML external file formats, allows spell checking of a range of words on demand, supports images

embedded within documents or pointed to through links, and can interact with external databases.

We consider two versions of this application: versions 0.5 and 0.6.  Version 0.5 was fielded and feedback

was obtained from its users.  This feedback included reports of failures and change requests for future

enhancements.  For our study, we only used the failure reports.  To address the additional functionalities,

version 0.6 involved an extensive redesign of the application, partially to avoid using an externally

provided GUI library which had critical limitations.

Version 0.5 had a total of 69 classes. The design metrics were collected using an especially developed

Java static analysis tool (Farnese et al., 1999). No Java inner classes were considered.  For each class

the design metrics were collected.  Also, for each class it was known how many field failures were

associated to a fault in that class. In total, 27 classes had faults.  Version 0.6 had 42 classes.  This

version was also used in the field and based on failure reports a subsequent version of the application

was released.  For version 0.6, 24 of the classes had faults in them that could be traced to field failures.
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In addition to the inheritance and coupling metrics, we collected two measures of size: the number of

attributes defined in a class and the number of methods. .  Both were defined as a size measures for

object-oriented classes in the past (Briand et al., 2000).  Since our conclusions are not changed by the

choice of size measure, we only consider the ATTS measure in this paper.

In our analysis we used data from version 0.5 as a training data set, and data from version 0.6 as the test

data set.  As noted above, all faults were due to field failures occuring during actual usage.  For each

class we characterized it as either faulty or not faulty (i.e., a binary characterization).  A faulty class had at

least one fault detected during field operation.

It has been argued that considering faults causing field failures is a more important question to address

than faults found during testing (Binkley and Schach, 1998). In fact, it has been argued that it is the

ultimate aim of quality modeling to identify post-release fault-proneness (Fenton and Neil, 1999a).  In at

least one study it was found that pre-release fault-proneness is not a good surrogate measure for post-

release fault-proness, the reason posited being that pre-release fault-proneness is a function of testing

effort (Fenton and Ohlsson, 2000).

3.2 Data Analysis Methods
Our data anslysis approach consists of four steps:2

1. Variable Selection

2. Calibration

3. Prediction

4. Quality Estimation

We describe the objectives of each of these steps below as well as the analysis techniques employed.

3.2.1 Variable Selection

During this step the objective is to identify the subset of the object-oriented metrics that are related to

fault-proneness.  These variables are then used as the basis for further modeling steps explained below.

We select variables that are individually associated with fault-proneness and that are orthogonal to each

other.

Variable selection is achieved by first looking at the relationship between each metric and fault-proneness

individually.3  The statistical modeling technique that we use is logistic regression (henceforth LR).  This is

                                                          
2 The research method presented here and that we use in our study is a refinement of the methodology used in a previous study (El-
Emam et al., 1999).
3 We do not employ automatic selection procedures since they are known to be unstable.  It is more common to use a forward
selection technique rather than backward selection.  The reason being that backward selection starts off with all of the variables and
then eliminates variables incrementally.  The number of observations is usually not large enough to justify construcing a model with
all variables included.  On the other hand, a Monte Carlo simulation of forward selection indicated that in the presence of collinearity
amongst the independent variables, the proportion of ‘noise’ variables that are selected can reach as high as 74% (Derksen and
Keselman, 1992).  It is clear that many object-oriented metrics are inter-correlated (Briand et al., 1998b; Briand et al., 2000).
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explained further in the appendix (Section 6), as well as some diagnostics that are applied to check the

stability of the resulting models.

A recent study highlighted the potential confounding effect of class size (El-Emam et al., 2000) and

demonstrated it on the Chidamber and Kemerer metrics (Chidamber and Kemerer, 1994) and a subset of

the Lorenz and Kidd (Lorenz and Kidd, 1994) metrics.  Specifically, this demonstration illustrated that

without controlling for the confounding effect of class size one obtains results that are systematically

optimistic. It is therefore necessary to control class size to get accurate results.  Our approach accounts

for the potential confounding effect of class size.

A measured confounding variable can be controlled through a regression adjustment (Breslow and Day,

1980; Schlesselman, 1982).  A regression adjustment entails including the confounder as another

independent variable in a regression model.  Our logistic regression model is therefore:

( )221101

1
xxe βββπ ++−+

= Eqn. 1

where π  is the probability of a class having a fault, 1x  is the object-oriented metric being validated, and

2x  is size, measured as ATTS.  We construct such a model for each object-oriented metric being

validated.

It should be noted that the object-oriented metric and the size confounding variable are not treated

symmetrically in this model.  Specifically, the size confounder (i.e., variable 2x ) should always be

included in the model, irrespective of its statistical significance (Breslow and Day, 1980).  If inclusion of

the size confounder does not affect the parameter estimate for the object-oriented metric (i.e., the 1β

parameter of variable 1x ), then we still get a valid estimate of the impact of the metric on fault-proneness.

The statistical significance of the parameter estimate for the object-oriented metric, however, is

interpreted directly since this is how we test our hypothesis.

In constructing our models, we follow previous literature in that we do not present results for interactions

nor higher order terms, for example, see (Basili et al., 1996; Benlarbi and Melo, 1999; Briand et al., 1997;

Briand et al., 1998a; Briand et al., 1998b; Briand et al., 2000; El-Emam et al., 2000; Tang et al., 1999).

This is to some extent justifiable given that as yet there is no clear theoretical basis to assume any of the

above.

Building LR models as in Eqn. 1 for each metric will result in a subset of the metrics that have statistically

significant parameters being retained.  However, it is likely that some of these retained metrics are

associated with each other.   We use the robust Spearman correlation coefficient for investigating such
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associations (Sheskin, 1997).4  For metrics that are strongly associated with each other, we select only

one of them for further consideration.  The selected metric would be the one that has the largest change

in odds ratio (i.e., the largest impact on fault-proneness).

The consequence of this step is a small number of metrics remaining that are both associated with fault-

proneness and that are orthogonal to each other.

3.2.2 Calibration

After identifying a subset of metrics that are associated with fault-proneness and that are orthogonal, we

construct a multivariate model that combines all of these metrics.  The construction of such a model

follows the same procedure described in Appendix A, except that more variables will be incorporated.

The multivariate model can be practically applied in identifying which classes are likely to contain a fault

(prediction step) and to estimate the overall fault content of a system (quality estimation step).  However,

first it must be calibrated.

During calibration we identify the optimal operating point for the model. This operating point maximizes

the prediction accuracy.  Recall that a logistic regression model makes predictions as a probability rather

than a binary value (i.e., if we use a LR model to make a prediction, the predicted value is the probability

of the occurrence of a fault).  It is common to choose a cutoff value for this predicted probability.  For

instance, if the predicted probability is greater than 0.5 then the class is predicted to be high risk.  Instead

of using such a generic cutoff, it is possible to select an optimal cutoff.  In Appendix C (Section 8) we

describe the use of Receiver Operating Characteristic (ROC) curves for identifying the optimal cutoff.

This is achieved by computing accuracy measures for all possible cutoff points and selecting the best

one.  Another useful measure from an ROC curve is the Area Under the Curve (AUC).  The AUC value

characterizes the accuracy of the model across all possible cutoff values.

During calibration only the training data set is used (version 0.5).  It has been recommended that in

studies where sample sizes are less than 100, as in our case, a leave-one-out approach provides reliable

estimates of accuracy (Weiss and Kulikowski, 1991). Therefore we use this approach during calibration.

3.2.3 Prediction

The calibrated model (with its optimal cutoff point already computed) can be used to predict which

classes have a fault in the test data set (version 0.6). To evaluate the binary prediction accuracy of the

calibrated model, we use the J coefficient. This is described further in appendix B (Section 7).  The

prediction results on a test data set provide a relatistic assessment of how accurate this multivariate

model will perform in actual projects.

                                                          
4 We do not employ a multivariate technique such as a principal components analysis because usually a small number of metrics
are retained and a simple correlation matrix makes clear the associations amongst them.  If many metrics are retained, then it would
be more appropriate to use a data reduction technique such as principal components analysis.
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3.2.4 Quality Estimation

The calibrated model can also be used to estimate the overall quality of an object-oriented application.

Here quality is defined as the proportion of classes that are faulty.  Appendix D (Section 9) explains how

quality estimates may be calculated.  We use the techniques in Appendix D to estimate the quality of the

test data set (version 0.6), and then compare this estimate to the actual quality.

3.2.5 Summary

An overall summary of each of the four steps in our research method is provided in Table 1, including a

description of the outputs.

Step Procedure Outcome

Variable Selection For each metric, construct a LR model with

two independent variables: a size measure

and the object-oriented metric.

Retain the metrics that have a statistically

significant parameter.

Look at the metrics’ inter-correlations and

select a subset that is orthogonal

A subset of the original metrics

that are associated with fault-

proneness and that are

orthogonal.

Calibration Construct a LR model with size and all of the

retained metrics from the above step.

Using a leave-one-out approach, construct

the ROC curve and determine the optimal

operating point.

A LR model with the size metric

and the retained metrics from the

previous step as independent

variables.

Identification of the optimal cutoff

value.

Prediction Using the model from the above step, predict

the fault status for the test data set at the

optimal operating point.

Estimate the prediction accuracy.

An estimate of the prediction

accuracy using the J coefficient.

Quality Estimation Estimate the proportion of faulty classes on

the test data set (the quality estimate) using

the calibrated model and evaluate its

accuracy.

The quality estimate on the test

data set and its accuracy.

Table 1: A summary of the steps in our research method.
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4 Results
4.1 Descriptive Statistics
The descriptive statistics for the object-oriented metrics and the size metric for the train and test data sets

are presented in Table 2 and Table 3 respectively.  The tables show the mean, standard deviation,

median, inter-quartile range (IQR), and the number of observations that are not equal to zero.  In general,

there are strong similarities between the two data sets.  It is noticable that the OCAEC metric has a rather

large standard deviation compared to the other metrics.

Variables ACAIC, ACMIC, DCAEC, and DCMEC have less than six observations that are non-zero on the

training data set.  Therefore, they were excluded from further analysis.  This is the approach followed in

previous studies (Briand et al., 2000; El-Emam et al., 2000).

Mean Median Std. Dev. IQR NOBS ≠ 0

ACAIC .043 0 .205 0 3

ACMIC .173 0 .839 0 3

DCAEC 0 0 0 0 0

DCMEC 0 0 0 0 0

OCAIC 3.144 1 4.512 4 40

OCAEC 2.695 1 6.181 2 47

OCMIC 1.681 1 2.933 2 39

OCMEC 2.072 1 5.140 2 40

DIT 1.217 1 1.069 2 47

NOC .188 0 .624 0 7

ATTS 9.159 7 10.745 13 52

Table 2: Descriptive statistics for all of the object-oriented metrics on the training data set (version 0.5).
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Mean Median Std. Dev. IQR NOBS ≠ 0

ACAIC .047 0 .215 0 2

ACMIC .214 0 .976 0 2

DCAEC 0 0 0 0 0

DCMEC 0 0 0 0 0

OCAIC 3.809 2 4.880 6 25

OCAEC 3.238 1 5.917 1 35

OCMIC 2.119 1 3.394 3 26

OCMEC 2.595 1 5.401 2 29

DIT 1.428 1 1.085 1 32

NOC .142 0 .472 0 4

ATTS 12.642 10.5 12.270 11 37

Table 3: Descriptive statistics for all of the object-oriented metrics on the test data set (version 0.6).

4.2 Variable Selection Results
Table 4 contains the results of the LR models after controlling class size.  The table only shows the

parameters of the object-oriented metrics since this is what we draw conclusions from.  This analysis was

performed only on the training data set.
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Metric G

(p-value)

R2 η
1β  Coefficient (s.e.) p-value ∆Ψ

OCAEC 42.45

(<0.0001)

0.49 5.80 2.5766

(0.6846)

0.0001 123

OCAIC 3.91

(0.1415)

0.0423 3.697 0.0541

(0.0801)

0.2498 1.276

OCMEC 29.57

(<0.0001)

0.33 3.64 1.2144

(0.3455)

0.0002 12.2

OCMIC 11.52

(0.0032)

0.124 2.61 0.3494

(0.1500)

0.0099 2.78

DIT 12.68

(0.0018)

0.137 3.869 0.7681

(0.2712)

0.0023 2.273

NOC 8.96

(0.0113)

0.099 2.239 -7.02

(25.07)

0.389 0.016

Table 4: Results of the validation, including the logistic regression parameters and diagnostics. The G
coefficient tests the hypothesis if any of the regression parameters is different from zero.  The R2 is a
goodness-of-fit measure, η  is the condition number to determine the extent of collinearity, 1β  is the

estimated coefficient for the object-oriented metric, (s.e.) is the standard error of the coefficient estimate,
the p-value is the one-sided probability of getting an coefficient as extreme under the null hypothesis, and

∆Ψ  is the change in odds ratio.

Only four metrics out of the six had a significant association with fault-proneness: OCAEC, OCMEC,

OCMIC, and DIT.  The change in odds ratio for the OCAEC metric is quite large.  The change in odds

ratio (see Section 6) is a function of the standard deviation of the metric.  OCAEC had a rather large

standard deviation.  This was due to a handful of observations that were extreme and hence inflated the

variation.  In general the standard deviation of this metric was sensitive to a minority of observations (i.e.,

removing them would have non-negligible impacts on the standard deviation).  Therefore, the estimate of

the change in odds ratio for OCAEC is quite unstable.

Out of the remaining significant metrics, OCMEC had the largest change in odds ratio, indicating its

strong impact on fault-proneness.
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OCAEC OCMEC OCMIC

OCMEC 0.81

(<0.0001)

OCMIC 0.50

(<0.0001)

0.71

(<0.0001)

DIT 0.30

(0.0015)

0.15

(0.1067)

0.09

(0.3480)

Table 5: Spearman correlations amongst the metrics that were found to be associated with fault-
proneness after controlling for size.

The Spearman correlations amongst the significant metrics are shown in Table 5.  It is seen that all the

coupling metrics are strongly associated with each other, with the strongest association between OCMEC

and OCAEC.  This is not surprising given that they are both export coupling metrics.  The DIT metric has

a much weaker association with the coupling metrics.

We therefore select OCMEC and DIT for further investigation.  We exclude OCAEC due to its unstable

standard deviation (i.e., its usage would give us unstable results), 5 and exclude OCMIC since its change

in odds ratio in Table 4 is smaller than that of OCMEC.

4.3 Calibration
At this juncture we have identified two metrics that have value additional to class size, and that carry

complementary information about the impact of class structure on fault-proneness.  We now construct a

multivariate LR model using these metrics.

                                                          
5 We also constructed a prediction model using the OCAEC metric instead of the OCMEC metric.  The prediction accuracy was
almost the same as that of the model using the OCMEC metric, but the model was, as expected, unstable.



V11-22/04/00 13

G R2 η

38.98; p<0.0001 0.4355 6.1737

Intercept ATTS OCMEC DIT

β  Coefficient -3.9735 0.0464 1.4719 1.0678

p-value 0.0001 0.1141 0.0004 0.0039

∆Ψ 1.603 20.746 3.156

Table 6: Logistic regression results for the best model. The G coefficient tests the hypothesis if any of the
regression parameters is different from zero.  The R2 is a goodness-of-fit measure, η  is the condition

number to determine the extent of collinearity, β  is the estimated coefficient for the variable, the p-value

is the one-sided probability of getting an coefficient as extreme under the null hypothesis, and ∆Ψ  is the
change in odds ratio.

Table 6 shows the multivariate LR model incorporating the two metrics and size.  It will be noted that the

effect of the size measure, ATTS, is not significant.  However, as noted earlier, we keep it in the model to

ensure that the parameter estimates for the remaining variables are accurate.
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Figure 2: ROC curve for the calibration model.  The area under the ROC curve is 0.87.  The optimal
operating point is at a cutoff value of 0.33, with a sensitivity of 0.81 and a specificity of 0.83.

The ROC curve for the model in Table 6 is shown in Figure 2.  This curve was constructed using a leave-

one-out approach.  The area under this curve is 0.87, which is rather high in comparison to a previous

study with object-oriented metrics (El-Emam et al., 1999). The optimal cutoff value for this LR model is

0.33, which is quite different from the traditonally utilized cutoff values (which are typically ≥  0.5).  The

sensitivity and specificity of this model at the optimal operating point are estimated to be 0.81 and 0.83

respectively. Sensitivity is the proportion of high risk classes that are correctly classified as high risk.

Specificity is the proportion of low risk classes that are correctly classified as low risk.

Now that we have calibrated the model (i.e., determined its optimal operating characteristics), it can be

applied to predict which classes in the test data set (version 0.6) are going to be faulty.

4.4 Prediction
We used the model in Table 6 to predict which classes in the test data set will have a fault.  Note that

since we only use design metrics, this prediction can be performed at design time.



V11-22/04/00 15

Figure 3: ROC curve for the test set.  The area under the ROC curve is 0.78.

The ROC curve for the predictions on the test data set is shown in Figure 3.  This curve has an area of

0.78, which is not far off from the leave-one-out estimate, and is very good.  This indicates that this model

would have a good prediction accuracy.  The predictions at the optimal cutoff of 0.33 are shown in Table

7.  The J value for this model is 0.49, which can be considered to be high.

Predicted Fault Status
Not faulty Faulty

Real Fault Status Not faulty 14 4 18

Faulty 7 17 24
21 21 42

Table 7: Prediction results in a confusion matrix for the optimal cutoff.  The J value for this is 0.49.

In practice, it is also informative to calculate the proportion correct accuracy for a prediction model when

used in a particular context.  The following equation formulates the relationship between sensitivity,

specificity, prevalence of faulty classes, and proportion correct accuracy:

))1(()( hfhsA −×+×= Eqn. 2
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where A  is the proportion correct accuracy, h  is the proportion of faulty classes, s  is sensitivity, and f

is specificity.  For example, if our prediction model is to be used on an actual project where only 10% of

the classes are expected to have faults in them, then the proportion correct accuracy would be

approximately 0.77.

4.5 Quality Estimation
In version 0.6 of the system, the prevalence of classes that were faulty was 0.57, as can be seen in Table

7.  The naïve estimate of the prevalence of faulty components is 0.50 (21/42). This is smaller than the

actual prevalance.  By using Eqn. 9 in Section 9 and the estimated sentsitivity and specificity, we can

correct this estimate to obtain an estimate of 0.52.  The corrected estimate is closer to the actual value.

In this particular example the LR model that we constructed was rather accurate on the test data set

(version 0.6).  Therefore, the naïve and corrected estimates were not far apart.  However, it is clear that

the corrected estimate is an improvement over the naïve estimate.

In general, a LR model constructed from the training data set can provide rather good quality estimates

using the formula provided in Section 9.  This is a considerable advantage as the LR model is usable at

the design stage of a project.

4.6 Discussion of Results
Our results indicate that, in addition to a simple size metric, the OCMEC and DIT metrics can be useful

indicators of fault-prone classes.  They are both associated with fault-proneness after controlling for size,

and when combined in a multivariate model can provide accurate predictions of which classes are likely

to contain a fault.  The added advantage of both of the above metrics is that they can all be collected at

design time, allowing early management of software quality.

We have also added to the methodology initially presented in (El-Emam et al., 1999, 2000) by providing a

correct technique for estimating the quality of an object-oriented system using design metrics.  Our results

indicate that such an estimate is rather accurate.

We found that an inheritance metric and an export coupling metric are both associated with fault-

proneness.  We discuss this finding and its implications on the design of object-oriented systems.

4.6.1 Relationship Between Inheritance Depth and Fault-Proneness

Previous studies suggest that depth of inheritance has an impact on the understandability of object-

oriented applications, and hence would be expected to have a detrimental influence on fault-proneness

(Cartwright, 1998; Unger and Prechelt, 1998).  However, this conclusion is equivocal as a contradictory

result was found in (Daly et al., 1996). Some authors (Unger and Prechelt, 1998) contend that inheritance

depth per se is not the factor that affects understandability, but the number of methods that have to be

traced.  Further support for this argument can be found in a recent study of a telecommunications C++
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system (El-Emam et al., 1999), whereby an ancestor based import coupling metric was found to be

associated with fault-proneness, whereas depth of inheritance tree did not.

The fact that we found that the depth of inheritance tree to be associated with fault-proneness may be,

according to previous literature reviewed above, due to two reasons:

•  A badly designed inheritance hierarchy such that inherited classes are inconsistent with their

superclasses; or

•  The DIT metric is confounded with method invocations up the inheritance hierarchy, and in fact

inheritance depth is not the cause of fault-proneness

Further focused studies are required to determine which of the above explanations are closer to reality.

4.6.2 Relationship between Export Coupling and Fault-Proneness

The effect of the export coupling metric in our results was much stronger than that of DIT.  The export

coupling metric that we selected considered class-method interactions, although we did find that it is

strongly associated with class-attribute interactions as well.  Therefore, a priori it seems reasonable to talk

about export coupling in general since these two types of interactions tend to co-occur.

A previous study of a C++ telecommunications system (El-Emam et al., 1999) also noted that export

coupling is associated with fault-proneness.  While two studies do not make a trend, there appears to be

some initial consistency in findings.

One can make two hypotheses about why export coupling is strongly associated with fault-proneness:

•  Classes that have a high export coupling are used more frequently than other classes.  This

means that in operational systems their methods are invoked most frequently.  Hence, even if all

classes in a system have exactly the same number of faults in them, more faults will be

discovered in those with high export coupling simply because they are exercised more.  This

hypothesis suggests that cognitive complexity is not the causal mechanism that would explain our

findings.

•  A client of a class d makes assumptions about d’s behavior.  A class with more export coupling

has more clients and therefore more assumptions are made about its behavior due to the

existence of more clients.  Since the union of these assumptions can be quite large, it is more

likely that this class d will have a subtle fault that violates this large assumption space, compared

to other classes with a smaller set of assumptions made about their behavior.

If either of the above hypotheses is true, it remains that they are not specific to object-oriented programs.

The same phenomena can occur in traditional applications that followed structured design methodology.
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4.6.3 Summary

Our results have highlighted certain structural properties of object-oriented systems that are problematic.

While we cannot provide exact causal explanations for the findings that inheritance depth and export

coupling are strongly associated with fault-proneness, we have posited some precise hypotheses that can

be tested through further empirical enquiry.

4.7 Limitations
This study has a number of limitations which should be made clear in the interpretation of our results.

These limitations are not unique to our study, but are characteristics of most of the product metrics

validation literature. However, it is of value to repeat them here.

This study did not account for the severity of faults.  Lack of accounting of fault severity was one of the

criticisms of the quality modeling literature in (Fenton and Neil, 1999b).  In general, unless the

organization has a reliable data collection program in place where severity is assigned, it is difficult to

retrospectively obtain this data.  Therefore, the prediction models developed here can be used to identify

classes that are prone to have faults that cause any type of failure.

It is also important to note that our conclusions are pertinent only to the fault-proneness dependent

variable, albeit this seems to be one of the more popular dependent variables in validation studies.  We

do not make claims about the validity (or otherwise) of the studied object-oriented metrics when the

external attributes of interest are, for example, maintainability (say measured as effort to make a change)

or reliability (say measured as mean time between failures).

It is unwise to draw broad conclusions from the results of a single study.  Our results indicate that two

structural properties of object-oriented metrics are associated with fault-proneness.  While these results

provide guidance for future research on the impact of coupling and inheritance on fault-proneness, they

should not be interpreted as the last word on the subject.  Further validations with different industrial

systems are necessary so that we can accumulate knowledge and draw stronger conclusions, and

perhaps explain the causal mechanisms that are operating.

5 Conclusions
In this paper we performed a validation of object-oriented design metrics on a commercial Java system.

The objective of the validation was to determine which of these metrics were associated with fault-

proneness.  This would allow the prediction of the classes that will be fault-prone and estimating the

overall quality of future systems.  Our results indicate that an inheritance and an export coupling metric

were strongly associated with fault-proneness.  Furthermore, the prediction model that we constructed

with these two metrics has good accuracy, and the method we employed for predicting the quality of a

future system using design metrics also has a good accuracy.
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While this is a single study, it does suggest that perhaps there are a small number of metrics that are

strongly associated with fault-proneness, and that good prediction accuracy and quality estimation

accuracy can be attained.  This conclusion is encouraging from a practical standpoint, and hence urges

further studies to corroborate (or otherwise) our findings and conclusions.

6 Appendix A: Overview of Logistic Regression
In this appendix we provide an overview of logistic regression and the various diagnostics and tests that

were applied during the construction of our models.

Binary logistic regression is used to construct models when the dependent variable is binary, as in our

case. The general form of an LR model is:
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where π  is the probability of a class having a fault, and the ix ’s are the independent variables.  The β

parameters are estimated through the maximization of a log-likelihood (Hosmer and Lemeshow, 1989).

6.1 Magnitude of Association
The magnitude of an association can be expressed in terms of the change in odds ratio as the 1x  variable

(i.e., object-oriented metric) changes by one standard deviation, and is denoted by ∆Ψ , and is given by6:
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where σ  is the standard deviation of the 1x  variable.  When computing the change in odds ratio, it is

also necessary to inspect each independent variable for outliers since a single extreme observation can

increase the standard deviation and hence inflate the change in odds ratio.  This only involves the

detection of univariate outliers, and therefore can be performed by inspecting the variable distribution.

6.2 Collinearity
Since we control for the size confounder through regression adjustment, careful attention should be paid

to the detection and mitigation of potential collinearity.  Strong collinearity can cause inflated standard

                                                          

6  In some instances the change in odds ratio is defined as: 
( )

( )1

1 1

x

x

Ψ
+Ψ

=∆Ψ .  This gives the change in odds when the object-

oriented metric increases by one unit. Since different metrics utilize different units, this approach precludes the comparison of the
change in odds ratio value.  By using an increment of one standard deviation rather than one unit, as we did, we can compare the
relative magnitudes of the effects of different object-oriented metrics since the same unit is used.
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errors for the estimated regression parameters.  We use the condition number (denoted by η ) as

described by Belsley et al. (Belsley et al., 1980). Further discussion of collinearity diagnostics in the

context of validating object-oriented metrics can be found in (El-Emam et al., 2000).  Belsley et al.

suggest that a condition number greater than 30 indicates mild to severe collinearity.

6.3 Hypothesis Testing
The next task in evaluating the LR model is to determine whether any of the regression parameters are

different from zero, i.e., test 0: 210 ==== kH βββ � . This can be achieved by using the likelihood

ratio G  statistic (Hosmer and Lemeshow, 1989). If the likelihood ratio test is found to be significant at an

05.0=α  then we can proceed to test each of the individual parameters. This is done using a Wald

statistic, ( )j

j

es β
β

ˆ..

ˆ
, which follows a standard normal distribution.  These tests were performed at a one-

tailed alpha level of 0.05.  We used one-tailed test since all of our alternative hypotheses are directional:

there is a positive association between the metric and fault-proneness.

For each object-oriented metric, if the parameter of the object-oriented metric is statistically significant,

then this metric is considered further.  Statistical significance indicates that the metric is associated with

fault-proneness.  If the parameter for the object-oriented metric is not statistically significant then that

metric is dropped from further consideration.

6.4 Goodness of Fit

In previous studies another descriptive statistic has been used, namely an 2R  statistic that is analogous

to the multiple coefficient of determination in least-squares regression (Briand et al., 1998b; Briand et al.,

2000). We use a corrected version of this suggested by Hosmer and Lemeshow (Hosmer and Lemeshow,

1989).  It should be recalled that this descriptive statistic will in general have low values compared to what

one is accustomed to in a least-squares regression.  In our study we will use the corrected 2R  statistic as

an indicator of the quality of the LR model.

6.5 Influence Analysis
Influence analysis is performed to identify influential observations (i.e., ones that have a large influence

on the LR model). Pergibon has defined the β∆  diagnostic (Pergibon, 1981) to identify influential groups

in logistic regression.  The β∆  diagnostic is a standardized distance between the parameter estimates

when a group of observations with the same ix  values is included and when they are not included in the

model.  We use the β∆  diagnostic in our study to identify influential groups of observations.  For groups

that are deemed influential we investigate this to determine if we can identify substantive reasons for
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them being overly influential.  In all cases in our study where a large β∆  was detected, its removal, while

affecting the estimated coefficients, did not alter our conclusions.

7 Appendix B: Measures of Prediction Accuracy
It is common that prediction models using object-oriented metrics are cast as a binary classification

problem.  We first present some notation before discussing the binary accuracy measure that we use.

Table 8 shows the notation in obtained frequencies when a binary classifier is used to predict the class of

unseen observations in a confusion matrix.  We consider a class as being high risk if it has a fault and low

risk if it does not have a fault.

Predicted Risk
Low High

Real Risk Low n11 n12 N1+

High n21 n22 N2+

N+1 N+2 N

Table 8: Notation for a confusion matrix.

Such a confusion matrix also appears frequently in the medical sciences in the context of evaluating

diagnostic tests, for example, see (Gordis, 1996).  Two important parameters have been defined on such

a matrix that will be used for our exposition, namely sensitivity and specificity.

The sensitivity of a binary classifier is defined as:

2221

22

nn

n
s

+
= Eqn. 5

This is the proportion of high risk classes that have been correctly classified as high risk classes.

The specificity of a binary classifier is defined as:

1211

11

nn

n
f

+
= Eqn. 6

This is the proportion of low risk classes that have been correctly classified as low risk classes.

Ideally, both the sensitivity and specificity should be high.  A low specificity means that there are many

low risk classes that are classified as high risk.  Therefore, the organization would be wasting resources

reinspecting or focusing additional testing effort on these classes.  A low sensitivity means that there are

many high risk classes that are classified as low risk.  Therefore, the organization would be passing high
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risk classes to subsequent phases or delivering them to the customer.  In both cases the consequences

may be expensive field failures or costly defect correction later in the life cycle.

The J coefficient of Youdon (Youden, 1950) was suggested in (El-Emam et al., 2001) as an appropriate

measure of accuracy for binary classifiers in software engineering.  This is defined as:

1−+= fsJ Eqn. 7

This coefficient has a number of desirable properties.  First, it is prevalence independent (i.e., it does not

depend on the proportion of faulty classes in the data set).  For example, if our classifier has specificity

and sensitivity equal to 9.0=f  and 7.0=s , then its J  value is 0.6 irrespective of prevalence.  The J

coefficient can vary from minus one to plus one, with plus one being perfect accuracy and –1 being the

worst accuracy.  A guessing classifier (i.e., one that guesses High/Low risk with a probability of 0.5) would

have a J  value of 0.  Therefore, J  values greater than zero indicate that the classifier is performing

better than would be expected from a guessing classifier.

8 Appendix C: Overview of ROC Curves
Previous studies have used a plethora of logistic regression cutoff values to decide what is high risk or

low risk, for example, 0.5 (Basili et al., 1996; Briand et al., 1998b, 1999b; Morasca and Ruhe, 1997), 0.6

(Briand et al., 1998b), 0.65 (Briand et al., 1998b; Briand et al., 2000), 0.66 (Briand et al., 1998a), 0.7

(Briand et al., 2000), and 0.75 (Briand et al., 2000). In fact, and as noted by some authors (Morasca and

Ruhe, 1997), the choice of cutoff value is arbitrary, and one can obtain different results by selecting

different cutoff values, for example, see (El-Emam et al., 1999).

A general solution to the arbitrary thresholds problem mentioned above is Receiver Operating

Characteristic (ROC) curves (Metz, 1978).  One selects many cutoff points, from 0 to 1 in our case, and

calculates the sensitivity and specificity for each cutoff value, and plots sensitivity against 1-specificity as

shown in Figure 4.  Such a curve describes the compromises that can be made between sensitivity and

specificity as the cutoff value is changed.  One advantage of expressing the accuracy of our prediction

model (or for that matter any diagnostic test) as an ROC curve is that it is independent of the cutoff value,

and therefore no arbitrary decisions need be made as to where to cut off the predicted probability to

decide that a class is high risk (Zweig and Campbell, 1993).  Furthermore, using an ROC curve, one can

easily determine the optimal operating point, and hence obtain an optimal cutoff value for an LR model.

For our purposes, we can obtain a summary accuracy measure from an ROC curve by calculating the

area under the curve using a trapezoidal rule (Hanley and McNeil, 1982).  The area under the ROC curve

has an intuitive interpretation (Hanley and McNeil, 1982; Spiegelhalter, 1986): it is the estimated

probability that a randomly selected class with a fault will be assigned a higher predicted probability by
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the logistic regression model than another randomly selected class without a fault.  Therefore, an area

under the curve of say 0.8 means that a randomly selected faulty class has an estimated probability

larger than a randomly selected not faulty class 80% of the time.

When a model cannot distinguish between faulty and not faulty classes, the area will be equal to 0.5 (the

ROC curve will coincide with the diagonal).  When there is a perfect separation of the values of the two

groups, the area under the ROC curve equals 1 (the ROC curve will reach the upper left corner of the

plot).

Therefore, to compute the accuracy of a prediction logistic regression model, we use the area under the

ROC curve, which provides a general and non-arbitrary measure of how well the probability predictions

can rank the classes in terms of their fault-proneness.

The optimal operating point on the ROC curve is the point closest to the top-left corner.  This gives the

cutoff value that will provide the highest sensitivity and specificity.  At the optimal cutoff one can also

estimate the sensitivity, ŝ , and specificity, f̂ .  These values are then used for quality estimation.

Figure 4: Hypothetical example of an ROC curve.



V11-22/04/00 24

9 Appendix D: Quality Estimation
Using a calibrated logistic regression model (i.e., where the optimal cutoff point has been identified), it is

possible to estimate quality on a new data set.  Here, quality is defined as the proportion of classes that

have at least one fault.  A naïve estimate of the proportion of faulty classes is:

N

N
t 2ˆ += Eqn. 8

However, as shown in (Rogan and Gladen, 1978), this will only be unbiased if both sensitivity and

specificity are equal to 1.  The corrected estimate of the proportion of faulty components is given by:

1ˆˆ

1ˆˆ
ˆ

−+
−+=

fs

ft
p

Eqn. 9

If both ŝ  and f̂  are equal to 1, then tp ˆˆ = .  Since in practice this is unlikely to be the case, we should

use Eqn. 9 to make the estimate.
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