I*I National Research Conseil national ERB-1062

Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

NC-CNC

The Confounding Effect of
Class Size on the Validity
of Object-oriented Metrics

Khaled El Emam, Saida Benlarbi, and
Nishith Goel
September 1999

Canada NRC 43606

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

The Confounding Effect of Class Size on the Validity
of Object-oriented Metrics

Khaled El Emam, Saida Benlarbi, and
Nishith Goel
September 1999

Copyright 1999 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

The Confounding Effect of Class Size on
The Validity of Object-Oriented Metrics

Khaled El Emam Saida Benlarbi
Nishith Goel
National Research Council, Canada Cistel Technology
Institute for Information Technology 210 Colonnade Road
Building M-50, Montreal Road Suite 204
Ottawa, Ontario Nepean, Ontario
Canada K1A ORG6 Canada K2E 7L5
khaled.el-emam@iit.nrc.ca {benlarbi, ngoel}@cistel.com
Abstract

Much effort has been devoted to the development and empirical validation of object-oriented metrics.
The empirical validations performed thus far would suggest that a core set of validated metrics is close
to being identified. However, none of these studies control for the potentially confounding effect of class
size. In this paper we demonstrate a strong size confounding effect, and question the results of previous
object-oriented metrics validation studies. We first investigated whether there is a confounding effect of
class size in validation studies of object-oriented metrics and show that based on previous work there is
reason to believe that such an effect exists. We then describe a detailed empirical methodology for
identifying those effects. Finally, we perform a study on a large C++ telecommunications framework to
examine if size is really a confounder. This study considered the Chidamber and Kemerer metrics, and
a subset of the Lorenz and Kidd metrics. The dependent variable was the incidence of a fault
attributable to a field failure (fault-proneness of a class). Our findings indicate that before controlling for
size, the results are very similar to previous studies: the metrics that are expected to be validated are
indeed associated with fault-proneness. After controlling for size none of the metrics we studied were
associated with fault-proneness anymore. This demonstrates a strong size confounding effect, and
casts doubt on the results of previous object-oriented metrics validation studies. It is recommended that
previous validation studies be re-examined to determine whether their conclusions would still hold after
controlling for size, and that future validation studies should always control for size.

1 Introduction

The validation of software product metrics' has received much research attention by the software
engineering community. There are two types of validation that are recognized [48]: internal and external.
Internal validation is a theoretical exercise that ensures that the metric is a proper numerical
characterization of the property it claims to measure. External validation involves empirically
demonstrating that the product metric is associated with some important external metric (such as
measures of maintainability or reliability). These are also commonly referred to as theoretical and
empirical validation respectively [73], and procedures for achieving both are described in [15]. Our focus
in this paper is empirical validation.”

Product metrics are of little value by themselves unless there is empirical evidence that they are
associated with important external attributes [65]. The demonstration of such a relationship can serve
two important purposes: early prediction/identification of high risk software components, and the
construction of preventative design and programming guidelines.

! Some authors distinguish between the terms ‘metric’ and ‘measure’ [2]. We use the term “metric” here to be consistent with
prevailing international standards. Specifically, ISO/IEC 9126:1991 [64] defines a “software quality metric” as a “quantitative scale
and method which can be used to determine the value a feature takes for a specific software product”.

% Theoretical validations of many of the metrics that we consider in this paper can be found in [20][21][30].

V/18-10/04/00 1

Early prediction is commonly cast as a binary classification problem.® This is achieved through a quality
model that classifies components into either a high or low risk category. The definition of a high risk
component varies depending on the context of the study. For example, a high risk component is one that
contains any faults found during testing [14][75], one that contains any faults found during operation [72],
or one that is costly to correct after an error has been found [3][13][1]. The identification of high risk
components allows an organization to take mitigating actions, such as focus defect detection activities on
high risk components, for example optimally allocating testing resources [56], or redesign components
that are likely to cause field failures or be costly to maintain. This is motivated by evidence showing that
most faults are found in only a few of a system’s components [86][51][67][91].

A number of organizations have integrated quality models and modeling techniques into their overall
quality decision making process. For example, Lyu et al. [81] report on a prototype system to support
developers with software quality models, and the EMERALD system is reportedly routinely used for risk
assessment at Nortel [62][63]. Ebert and Liedtke describe the application of quality models to control the
quality of switching software at Alcatel [46].

The construction of design and programming guidelines can proceed by first showing that there is a
relationship between say a coupling metric and maintenance cost. Then proscriptions on the maximum
allowable value on that coupling metric are defined in order to avoid costly rework and maintenance in the
future. Examples of cases where guidelines were empirically constructed are [1][3].4 Guidelines based
on anecdotal experience have also been defined [80], and experience-based guidelines are used directly
in the context of software product acquisition by Bell Canada [34].

Concordant with the popularity of the object-oriented paradigm, there has been a concerted research
effort to develop object oriented product metrics [8][17][30][80][78][27][24][60][106], and to validate them
[41[27][27]1[19][22][78][32][57][89][106][8][25][10]. For example, in [8] the relationship between a set of
new polymorphism metrics and fault-proneness is investigated. A study of the relationship between
various design and source code measures using a data set from student systems was reported in
[4][17][22][18], and a validation study of a large set of object-oriented metrics on an industrial system was
described in [19]. Another industrial study is described in [27] where the authors investigate the
relationship between object-oriented design metrics and two dependent variables: the number of defects
and size in LOC. Li and Henry [78] report an analysis where they related object-oriented design and code
metrics to the extent of code change, which they use as a surrogate for maintenance effort. Chidamber
et al. [32] describe an exploratory analysis where they investigate the relationship between object-
oriented metrics and productivity, rework effort and design effort on three different financial systems
respectively. Tang et al. [1L06] investigate the relationship between a set of object-oriented metrics and
faults found in three systems. Nesi and Querci [89] construct regression models to predict class
development effort using a set of new metrics. Finally, Harrison et al. [57] propose a new object-oriented
coupling metric, and compare its performance with a more established coupling metric.

Despite minor inconsistencies in some of the results, a reading of the object-oriented metrics validation
literature would suggest that a number of metrics are indeed ‘validated’ in that they are strongly
associated with outcomes of interest (e.g., fault-proneness) and that they can serve as good predictors of
high-risk classes. The former is of course a precursor for the latter. For example, it has been stated that
some metrics (namely the Chidamber and Kemerer — henceforth CK — metrics of [30]) “have been proven
empirically to be useful for the prediction of fault-prone modules” [106]. A recent review of the literature
stated that “Existing data suggests that there are important relationships between structural attributes and
external quality indicators” [23].

However, almost all of the validation studies that have been performed thus far completely ignore the
potential confounding impact of class size. This is the case because the analyses employed are
univariate: they only model the relationship between the product metric and the dependent variable of
interest. For example, recent studies used the bivariate correlation between object-oriented metrics and

® It is not, however, always the case that binary classifiers are used. For example, there have been studies that predict the number
of faults in individual components (e.g., [69]), and that produce point estimates of maintenance effort (e.g., [78][66]).

* It should be noted that the construction of guidelines requires the demonstration of a causal relationship rather than a mere
association.

V/18-10/04/00 2

the number of faults to investigate the validity of the metrics [57][10]. Also, univariate logistic regression
models are used as the basis for demonstrating the relationship between object-oriented product metrics
and fault-proneness in [22][19][106]. The importance of controlling for potential confounders in empirical
studies of object-oriented products has been emphasized [23]. However, size, the most obvious potential
confounder, has not been controlled in previous validation studies.

The objective of this paper is to investigate the confounding effect of class size on the validation of object-
oriented product metrics. We first demonstrate based on previous work that there is potentially a size
confounding effect in object-oriented metrics validation studies, and present a methodology for empirically
testing this. We then perform an empirical study on an object-oriented telecommunications framework
written in C++ [102]. The metrics we investigate consist of the CK metrics suite® [30], and some of the
metrics defined by Lorenz and Kidd [80]. The external metric that we validate against is the occurrence of
a fault, which we term the fault-proneness of the class. In our study a fault is detected due to a field
failure.

Briefly, our results indicate that by using the commonly employed univariate analyses our results are
consistent with previous studies. After controlling for the confounding effect of class size, none of the
metrics is associated with fault-proneness. This indicates a strong confounding effect of class size on
some common object-oriented metrics. The results cast serious doubt that many previous validation
studies demonstrate more than that size is associated with fault-proneness.

Perhaps the most important practical implication of these results is that design and programming
guidelines based on previous validation studies are questioned. Efforts to control cost and quality using
object-oriented metrics as early indicators of problems may be achieved just as well using early indicators
of size. The implications for research are that data from previous validation studies should be re-
examined to gauge the impact of the size confounding effect, and future validation studies should control
for size.

In Section 2 we provide the rationale behind the confounding effect of class size and present a framework
for its empirical investigation. Section 3 presents our research method, and Section 4 includes the results
of the study. We conclude the paper in Section 5 with a summary and directions for future work.

2 Background

This section is divided in two parts. First, we present the theoretical and empirical basis of the object-
oriented metrics that we attempt to validate. Second, we demonstrate that there is a potentially strong
size confounding effect in object-oriented metrics validation studies.

2.1 Theoretical and Empirical Basis of Object-Oriented Metrics
2.1.1 Theoretical Basis and Its Empirical Support

The primary reason why there is an interest in the development of product metrics in general is
exemplified by the following justification for a product metric validity study “There is a clear intuitive basis
for believing that complex programs have more faults in them than simple programs” [87]. However, an
intuitive belief does not make a theory. In fact, the lack of a strong theoretical basis driving the
development of traditional software product metrics has been criticized in the past [68]. Specifically,
Kearney et al. [68] state that “One of the reasons that the development of software complexity measures
is so difficult is that programming behaviors are poorly understood. A behavior must be understood before
what makes it difficult can be determined. To clearly state what is to be measured, we need a theory of
programming that includes models of the program, the programmer, the programming environment, and
the programming task.”

® It has been stated that for historical reasons the CK metrics are the most referenced [23]. Most commercial metrics collection tools
available at the time of writing also collect these metrics.

V/18-10/04/00 3

affect

Structural Class i » External Attributes
. ffect
Properties L} CCognlltlv_c: (e.g., fault-proneness,
(e.g., coupling) ompiexity |« maintainability)

indicate

Figure 1: Theoretical basis for the development of object-oriented product metrics.

In the arena of object-oriented metrics, a slightly more detailed articulation of a theoretical basis for
developing quantitative models relating product metrics and external quality metrics has been provided in
[19], and is summarized in Figure 1. There, it is hypothesized that the structural properties of a software
component (such as its coupling) have an impact on its cognitive complexity. Cognitive complexity is
defined as the mental burden of the individuals who have to deal with the component, for example, the
developers, testers, inspectors, and maintainers. High cognitive complexity leads to a component
exhibiting undesirable external qualities, such as increased fault-proneness and reduced maintainability.®

Certain structural features of the object-oriented paradigm have been implicated in reducing the
understandability of object-oriented programs, hence raising cognitive complexity. We describe these
below.

2.1.1.1 Distribution of Functionality

In traditional applications developed using functional decomposition, functionality is localized in specific
procedures, the contents of data structures are accessed directly, and data central to an application is
often globally accessible [110]. Functional decomposition makes procedural programs easier to
understand because it is based on a hierarchy in which a top-level function calls lower level functions to
carry out smaller chunks of the overall task [109]. Hence tracing through a program to understand its
global functionality is facilitated.

In one experimental study with students and professional programmers [11], the authors compared
maintenance time for three equivalent programs (implementing three different applications, therefore we
have nine programs): one consisted of a straight serial structure (i.e., one main function), a program
developed following the principles of functional decomposition, and an object-oriented program (without
inheritance). In general, it took the students more time to change the object-oriented programs, and the
professionals exhibited the same effect, although not as strongly. Furthermore, both the students and
professionals noted that they found that it was most difficult to recognize program units in the object-
oriented programs, and the students felt that it was also most difficult to find information in the object-
oriented programs. Widenbeck et al. [L09] make a distinction between program functionality at the local
level and at the global (application) level. At the local level they argue that the object-oriented paradigm’s
concept of encapsulation ensures that methods are bundled together with the data that they operate on,
making it easier to construct appropriate mental models and specifically to understand a class’ individual
functionality. At the global level, functionality is dispersed amongst many interacting classes, making it
harder to understand what the program is doing. They support this in an experiment with equivalent small
C++ (with no inheritance) and Pascal programs whereby the subjects were better able to answer
guestions about the functionality of the C++ program. They also performed an experiment with larger
programs. Here the subjects with the C++ program (with inheritance) were unable to answer questions
about its functionality much better than guessing. While this study was done with novices, it supports the
general notions that high cohesion makes object-oriented programs easier to understand, and high
coupling makes them more difficult to understand. Wilde et al.’s [110] conclusions based on an interview-
based study of two object-oriented systems at Bellcore implemented in C++ and an investigation of a PC
Smalltalk environment, all in different application domains, are concordant with this finding, in that
programmers have to understand a method’s context of use by tracing back through the chain of calls
that reach it, and tracing the chain of methods it uses. When there are many interactions, this

® To reflect the likelihood that not only structural properties affect a component’s external qualities, some authors have included
additional metrics as predictor variables in their quantitative models, such as reuse [69], the history of corrected faults [70], and the
experience of developers [72][71]. However, this does not detract from the importance of the primary relationship between product
metrics and a component’s external qualities.

V/18-10/04/00 4

exacerbates the understandability problem. An investigation of a C and a C++ system, both developed by
the same staff in the same organization, concluded that “The developers found it much harder to trace
faults in the OO C++ design than in the conventional C design. Although this may simply be a feature of
C++, it appears to be more generally observed in the testing of OO systems, largely due to the distorted
and frequently nonlocal relationships between cause and effect: the manifestation of a failure may be a
‘long way away’ from the fault that led to it. [...] Overall, each C++ correction took more than twice as long
to fix as each C correction.” [59].

2.1.1.2 Inheritance Complications

As noted in [43], there has been a preoccupation within the community with inheritance, and therefore
more studies have investigated that particular feature of the object-oriented paradigm.

Inheritance introduces a new level of delocalization, making the understandability even more difficult. It
has been noted that “Inheritance gives rise to distributed class descriptions. That is, the complete
description for a class C can only be assembled by examining C as well as each of C’'s superclasses.
Because different classes are described at different places in the source code of a program (often spread
across several different files), there is no single place a programmer can turn to get a complete
description of a class” [77]. While this argument is stated in terms of source code, it is not difficult to
generalize it to design documents. Wilde et al.’s study [110] indicated that to understand the behavior of
a method one has to trace inheritance dependencies, which is considerably complicated due to dynamic
binding. A similar point was made in [77] about the understandability of programs in languages that
support dynamic binding, such as C++.

In a set of interviews with 13 experienced users of object-oriented programming, Daly et al. [40] noted
that if the inheritance hierarchy is designed properly then the effect of distributing functionality over the
inheritance hierarchy would not be detrimental to understanding. However, it has been argued that there
exists increasing conceptual inconsistency as one travels down an inheritance hierarchy (i.e., deeper
levels in the hierarchy are characterized by inconsistent extensions and/or specializations of super-
classes) [45], therefore inheritance hierarchies may not be designed properly in practice. In one study
Dvorak [45] found that subjects were more inconsistent in placing classes deeper in the inheritance
hierarchy when compared to at higher levels in the hierarchy.

An experimental investigation found that making changes to a C++ program with inheritance consumed
more effort than a program without inheritance, and the author attributed this to the subjects finding the
inheritance program more difficult to understand based on responses to a questionnaire [26]. A
contradictory result was found in [41], where the authors conducted a series of classroom experiments
comparing the time to perform maintenance tasks on a ‘flat’ C++ program and a program with three levels
of inheritance. This was premised on a survey of object-oriented practitioners showing 55% of
respondents agreeing that inheritance depth is a factor when attempting to understand object-oriented
software [39]. The result was a significant reduction in maintenance effort for the inheritance program.
An internal replication by the same authors found the results to be in the same direction, albeit the p-
value was larger. The second experiment in [41] found that C++ programs with 5 levels of inheritance
took more time to maintain than those with no inheritance, although the effect was not statistically
significant. The authors explain this by observing that searching/tracing through the bigger inheritance
hierarchy takes longer. Two experiments that were partial replications of the Daly et al. experiments
produced different conclusions [107]. In both experiments the subjects were given three equivalent Java
programs to make changes to, and the maintenance time was measured. One of the Java programs was
‘flat’, one had an inheritance depth of 3, and one had an inheritance depth of 5. The results for the first
experiment indicate that the programs with inheritance depth of 3 took longer to maintain than the ‘flat’
program, but the program with inheritance depth of 5 took as much time as the ‘flat’ program. The authors
attribute this to the fact that the amount of changes required to complete the maintenance task for the
deepest inheritance program was smaller. The results for a second task in the first experiment and the
results of the second experiment indicate that it took longer to maintain the programs with inheritance. To
explain this finding and its difference from the Daly et al. results, the authors showed that the “number of
methods relevant for understanding” (which is the number of methods that have to be traced in order to
perform the maintenance task) was strongly correlated with the maintenance time, and this value was
much larger in their study compared with the Daly et al. programs. The authors conclude that inheritance

V/18-10/04/00 5

depth per se is not the factor that affects understandability, but the number of methods that have to be
traced.

2.1.1.3 Summary

The current theoretical framework for explaining the effect of the structural properties of object-oriented
programs on external program attributes can be justified empirically. To be specific, studies that have
been performed indicate that the distribution of functionality across classes in object-oriented systems,
and the exacerbation of this through inheritance, potentially makes programs more difficult to understand.
This suggests that highly cohesive, sparsely coupled, and low inheritance programs are less likely to
contain a fault. Therefore, metrics that measure these three dimensions of an object-oriented program
would be expected to be good predictors of fault-proneness or the number of faults.

The empirical question is then whether contemporary object-oriented metrics measure the relevant
structural properties well enough to substantiate the above theory. Below we review the evidence on this.

2.1.2 Empirical Validation of Object-Oriented Metrics

In this section we review the empirical studies that investigate the relationship between the ten object-
oriented metrics that we study and fault-proneness (or number of faults). The product metrics cover the
following dimensions: coupling, cohesion, inheritance, and complexity. These dimensions are based on
the definition of the metrics, and may not reflect their actual behavior.

Coupling metrics characterize the static usage dependencies amongst the classes in an object-oriented
system [21]. Cohesion metrics characterize the extent to which the methods and attributes of a class
belong together [16]. Inheritance metrics characterize the structure of the inheritance hierarchy.
Complexity metrics, as used here, are adaptations of traditional procedural paradigm complexity metrics
to the object-oriented paradigm.

Current methodological approaches for the validation of object-oriented product metrics are best
exemplified by two articles by Briand et al. [19][22]. These are validation studies for an industrial
communications system and a set of student systems respectively, where a considerable number of
contemporary object-oriented product metrics were studied. We single out these studies because their
methodological reporting is detailed and because they reflect what can be considered best
methodological practice to date.

The basic approach starts with a data set of product metrics and binary fault data for a complete system
or multiple systems. The important element of the Briand et al. methodology that is of interest to us here
is the univariate analysis that they stipulate should be performed. In fact, the main association between
the product metrics and fault-proneness is established on the basis of the univariate analysis. If the
relationshi7p is statistically significant (and in the expected direction) than a metric is considered
validated.” For instance, in [22] the authors state a series of hypotheses relating each metric with fault-
proneness. They then explain “Univariate logistic regression is performed, for each individual measure
(independent variable), against the dependent variable to determine if the measure is statistically related,
in the expected direction, to fault-proneness. This analysis is conducted to test the hypotheses..”
Subsequently, the results of the univariate analysis are used to evaluate the extent of evidence
supporting each of the hypotheses. Reliance on univariate results as the basis for drawing validity
conclusions is common practice (e.g., see [4][10][17][18][57][106]).

In this review we first present the definition of the metrics as we have operationalized them. The
operationalization of some of the metrics is programming language dependent. We then present the
magnitude of the coefficients and p values computed in the various studies. Validation coefficients were
either the change in odds ratio as a measure of the magnitude of the metric to fault-proneness
association from a logistic regression (see the appendix, Section 7) or the Spearman correlation
coefficient. Finally, this review focuses only on the fault-proneness or number of faults dependent
variable. Other studies that investigated effort, such as [32][89][78], are not covered as effort is not the
topic of the current paper.

" Briand et al. use logistic regression, and consider the statistical significance of the regression parameters.

V/18-10/04/00 6

2121 WMC

This is the Weighted Methods per Class metric [30], and can be classified as a traditional complexity
metric. It is a count of the methods in a class. The developers of this metric leave the weighting scheme
as an implementation decision [30]. We weight it using cyclomatic complexity as did [78]. However, other
authors did not adopt a weighting scheme [4][106]. Methods from ancestor classes are not counted and
neither are “friends” in C++. This is similar to the approach taken in, for example, [4][31]. To be precise,
WMC was counted after preprocessing to avoid undercounts due to macros [33].

One study found WMC to be associated with fault-proneness on three different sub-systems written in
C++ with p-values 0.054, 0.0219 and 0.0602, and change in odds ratio 1.26, 1.45, and 1.26 [106].° A
study that evaluated WMC on a C++ application and a Java application found WMC to have a Spearman
correlation of 0.414 and 0.456 with the number of faults due to field failures respectively, and highly
significant p-values (<0.0001 and <0.0056) [10]. Another study using student systems found WMC to be
associated with fault-proneness with a p-value for the logistic regression coefficient of 0.0607 [4].*°

2122 DIT

The Depth of Inheritance Tree [30] metric is defined as the length of the longest path from the class to the
root in the inheritance hierarchy. It is stated that as one goes further down the class hierarchy the more
complex a class becomes, and hence more fault-prone.

The DIT metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was related
to fault-proneness (p=0.0074) with a change in odds ratio equal to 0.572 when measured on non-library
classes. The second study [22] also found it to be associated with fault-proneness (p=0.0001) with a
change in odds ratio of 2.311. Another study using student systems found DIT to be associated with fault-
proneness with a p-value for the logistic regression coefficient <0.0001 [4].

It will be noted that in the first study a negative association was found between DIT and fault-proneness.
The authors explain this by stating that in the system studied classes located deeper in the inheritance
hierarchy provide only implementations for a few specialized methods, and are therefore less likely to
contain faults than classes closer to the root [19]. This was a deliberate strategy to place as much
functionality as close as possible to the root of the inheritance tree. Note that for the latter two
investigations, the same data set was used, and therefore the slightly different coefficients may have
been due to removal of outliers.

One study using data from an industrial system found that classes involved in an inheritance structure
were more likely to have defects (found during integration testing and within 12 months post-delivery)
[27]. Another study did not find DIT to be associated with fault-proneness on three different sub-systems
written in C++, where faults were based on three years’ worth of trouble reports [106]. One study that
evaluated DIT on a Java application found that it had a Spearman correlation of 0.523 (p<0.0015) with the
number of faults due to field failures [10].

2.1.2.3 NOC

This is the Number of Children inheritance metric [30]. This metric counts the number of classes which
inherit from a particular class (i.e., the number of classes in the inheritance tree down from a class).

The NOC metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was not
related to fault-proneness. Conversely, the second study [22] found it to be associated with fault-
proneness (p=0.0276) with a change in odds ratio of 0.322. Another study using student systems found

® Note that macros embodied in #ifdef's are used to customize the implementation to a particular platform. Therefore, the method is
defined at design time but its implementation is conditional on environment variables. Not counting it, as suggested in [31], would
undercount methods known at design time.

® In this study faults were classified as either object-oriented type faults or traditional faults. The values presented here are for all of
the faults, although the same metrics were found to be significanct for both all faults and the object-oriented only faults.
Furthermore, the change in odds ratio reported is based on a change of one unit of the metric rather than a change in the standard
deviation.

0 This study used the same data set as in [22], except that the data was divided into subsets using different criteria. The results
presented here are for all of the classes.

V/18-10/04/00 7

NOC to be associated with fault-proneness with a p-value for the regression coefficient <0.0001 [4]. Note
that for the latter two investigations, the same data set was used, and therefore the slightly different
coefficients may have been due to removal of outliers. In both studies NOC had a negative association
with fault-proneness and this was interpreted as indicating that greater attention was given to these
classes (e.qg., through inspections) given that many classes were dependent on them.

Another study did not find NOC to be associated with fault-proneness on three different sub-systems
written in C++, where faults were based on three years’ worth of trouble reports [106]. NOC was not
associated with the number of faults due to field failures in a study of two systems, one implemented in
C++ and the other in Java [10].

2124 CBO

This is the Coupling Between Object Classes coupling metric [30]. A class is coupled with another if
methods of one class uses methods or attributes of the other, or vice versa. In this definition, uses can
mean as a member type, parameter type, method local variable type or cast. CBO is the number of other
classes to which a class is coupled. It includes inheritance-based coupling (i.e., coupling between
classes related via inheritance).

The CBO metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was
related to fault-proneness (p<0.0001) with a change in odds ratio equal to 5.493 when measured on non-
library classes. The second study [22] also found it to be associated with fault-proneness (p<0.0001) with
a change in odds ratio of 2.012 when measured on non-library classes. Another study did not find CBO to
be associated with fault-proneness on three different sub-systems written in C++, where faults were
based on three years’ worth of trouble reports [106]. This was also the case in a recent empirical analysis
on two traffic simulation systems, where no relationship between CBO and the number of known faults
was found [57], and a study of a Java application where CBO was not found to be associated with faults
due to field failures [10]. Finally, another study using student systems found CBO to be associated with
fault-proneness with a p-value for the logistic regression coefficient <0.0001 [4].

2125 RFC

This is the Response for a Class coupling metric [30]. The response set of a class consists of the set M of
methods of the class, and the set of methods invoked directly by methods in M (i.e., the set of methods
that can potentially be executed in response to a message received by that class). RFC is the number of
methods in the response set of the class.

The RFC metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was
related to fault-proneness (p=0.0019) with a change in odds ratio equal to 1.368 when measured on non-
library classes. The second study [22] also found it to be associated with fault-proneness (p<0.0001) with
a change in odds ratio of 3.208 when measured on non-library classes. Another study found RFC to be
associated with fault-proneness on two different sub-systems written in C++ with p-values 0.0401 and
0.0499, and change in odds ratio 1.0562 and 1.0654 [106]."" A study that evaluated RFC on a C++
application and a Java application found RFC to have a Spearman correlation of 0.417 and 0.775 with the
number of faults due to field failures respectively, and highly significant p-values (both <0.0001) [10].
Another study using student systems found RFC to be associated with fault-proneness with a p-value for
the logistic regression coefficient <0.0001 [4].

™ In this study faults were classified as either object-oriented type faults or traditional faults. The values presented here are for all of
the faults, although the same metrics were found to be significanct for both all faults and the object-oriented only faults.
Furthermore, the change in odds ratio reported is based on a change of one unit of the metric rather than a change in the standard
deviation.

V/18-10/04/00 8

2126 LCOM

This is a cohesion metric that was defined in [30]. This measures the number of pairs of methods in the
class using no attributes in common minus the number of pairs of methods that do. If the difference is
negative it is set to zero.

The LCOM metric was empirically evaluated in [19][22]. In [19] the authors found it to be associated with
fault-proneness (p=0.0.249) with a change in odds ratio of 1.613. Conversely, the second study [22] did
not find it to be associated with fault-proneness.

2.1.27 NMO

This is an inheritance metric that has been defined in [80], and measures the number of inherited
methods overriden by a subclass. A large number of overriden methods indicates a design problem [80].
Since a subclass is intended to specialize its parent, it should primarily extend the parent’s services [94].
This should result in unique new method names. Numerous overrides indicate subclassing for the
convenience of reusing some code and/or instance variables when the new subclass is not purely a
specialization of its parent [80].

The NMO metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was
related to fault-proneness (p=0.0082) with a change in odds ratio equal to 1.724. The second study [22]
also found it to be associated with fault-proneness (p=0.0243) with a change in odds ratio of 1.948.

Lorenz and Kidd [80] caution that in the context of frameworks methods are often defined specifically for
reuse or that are meant to be overriden. Therefore, for our study there is already an a priori expectation
that this metric may not be a good predictor.

2.1.2.8 NMA

This is an inheritance metric that has been defined in [80], and measures the number of methods added
by a subclass (inherited methods are not counted). As this value becomes larger for a class, the
functionality of that class becomes increasingly distinct from that of the parent classes.

The NMO metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was
related to fault-proneness (p=0.0021) with a change in odds ratio equal to 3.925, a rather substantial
effect. The second study [22] also found it to be associated with fault-proneness (p=0.0021) with a
change in odds ratio of 1.710.

2129 SIX

This is an inheritance metric that has been defined in [80], and consists of a combination of inheritance
metrics. It is calculated as the product of the number of overriden methods and the class hierarchy
nesting level normalized by the total number of methods in the class. The higher value for SIX, the more
likely that a particular class does not conform to the abstraction of it's superclasses [94].

The SIX metric was empirically evaluated in [19][22]. In [19] the authors found that this metric was not
related to fault-proneness. Conversely, the second study [22] found it to be associated with fault-
proneness (p=0.0089) with a change in odds ratio of 1.337.

2.1.2.10 NPAVG

This can be considered as a coupling metric and has been defined in [80], and measures the average
number of parameters per method (not including inherited methods). Methods with a high number of
parameters generally require considerable testing (as their input can be highly varied). Also, large
numbers of parameters lead to more complex, less maintainable code.

2.1.2.11 Summary

The current empirical studies do provide some evidence that object oriented metrics are associated with
fault-proneness or the incidence of faults. Though, the evidence is equivocal. For some of the inheritance
metrics that were studied (DIT and NOC) some studies found a positive association, some found a
negative association, and some found no association. The CBO metric was found to be positively
associated with fault-proneness in some studies, and not associated with either the number of faults
found or fault-proneness in other studies. The RFC and WMC metrics were consistently found to be

V/18-10/04/00 9

associated with fault-proneness. The NMO and NMA metrics were found to be associated with fault-
proneness, but the evidence for the SIX metric is more equivocal. The LCOM cohesion metric also has
equivocal evidence supporting its validity.

It should be noted that the differences in the results obtained across studies may be a consequence of
the measurement of different dependent variables. For instance, some treat the dependent variable as
the (continuous) number of defects found. Other studies use a binary value of incidence of a fault during
testing or in the field, or both. It is plausible that the effects of product metrics may be different for each of
these.

An optimistic observer would conclude that the evidence as to the predictive validity of most of these
metrics is good enough to recommend their practical usage.

2.2 The Confounding Effect of Size

In this section we take as a starting point the stance of an optimistic observer and assume that there is
sufficient empirical evidence demonstrating the relationship between the object-oriented metrics that we
study and fault-proneness. We already showed that previous empirical studies drew their conclusions
from univariate analyses. Below we make the argument that univariate analyses ignore the potential
confounding effects of class size. We show that if there is indeed a size confounding effect, then
previous empirical studies could have harbored a large positive bias.

For ease of presentation we take as a running example a coupling metric as the main metric that we are
trying to validate. For our purposes, a validation study is designed to determine whether there is an
association between coupling and fault-proneness. Furthermore, we assume that this coupling metric is
appropriately dichotomized: Low Coupling (LC) and High Coupling (HC). This dichotomization
assumption simplifies the presentation, but the conclusions can be directly generalized to a continuous
metric.

2.2.1 The Case Control Analogy

An object-oriented metrics validation study can be easily seen as an unmatched case-control study.
Case-control studies are frequently used in epidemiology to, for example, study the effect of exposure to
carcinogens on the incidence of cancers [95][12]". The reason for using case-control studies as opposed
to randomized experiments in certain instances is that it would not be ethically and legally defensible to
do otherwise. For example, it would not be possible to have deliberately composed ‘exposed’ and
‘unexposed’ groups in a randomized experiment when the exposure is a suspected carcinogen or toxic
substance. Randomized experiments are more appropriately used to evaluate treatments or preventative
measures [52].

In applying the conduct of a case-control study to the validation of an object-oriented product metric, one
would first proceed by identifying classes that have faults in them (the cases). Then, for the purpose of
comparison another group of classes without faults in them are identified (the controls). We determine
the proportion of cases that have, say High Coupling and the proportion with Low Coupling. Similarly, we
determine the proportion of controls with High Coupling, and the proportion with Low Coupling. If there is
an association of coupling with fault-proneness then the prevalence of High Coupling classes would be
higher in the cases than in the controls. Effectively then, a case-control study follows a paradigm that
proceeds from effect to cause, attempting to find antecedents that lead to faults [99]. In a case-control
study, the control group provides an estimate of the frequency of High Coupling that would be expected
among the classes that do not have faults in them.

In an epidemiological context, it is common to have ‘hospital-based cases’ [52][95]. For example, a
subset or all patients that have been admitted to a hospital with a particular disease can be considered as
cases. Controls can also be selected from the same hospital or clinic."* The selection of controls is not
necessarily a simple affair. For example, one can match the cases with controls on some confounding

12 Other types of studies that are used are cohort-studies [52], but we will not consider these here.

'3 This raises the issue of generalizability of the results. However, as noted by Breslow and Day [12], generalization from the sample
in a case-control study depends on non-statistical arguments. The concern with the design of the study is to maximize internal
validity. In general, replication of results establishes generalizability [79].

V/18-10/04/00 10

variables, for instance, on age and sex. Matching ensures that the cases and controls are similar on the
matching variable and therefore this variable cannot be considered a causal factor in the analysis.
Alternatively, one can have an unmatched case-control study and control for confounding effects during
the analysis stage.

In an unmatched case-control study the determination of an association between the exposure (product
metric) and the disease (fault-proneness) proceeds by calculating a measure of association and
determining whether it is significant. For example, consider the following contingency table that is
obtained from a hypothetical validation study:

Fault Proneness

Faulty Not Faulty
Coupling HC 91 19
LC 19 91

Table 1: A contingency table showing the results of a hypothetical validation study.

For this particular data set, the odds ratio is 22.9 (see the appendix, Section 7, for a definition of the odds
ratio), which is highly significant, indicating a strong positive association between coupling and fault-
proneness.

2.2.2 The Potential Confounding Effect of Size

One important element that has been ignored in previous validation studies is the potential confounding
effect of class size. This is illustrated in Figure 2.

Product
Metric (a)

© Fault-Proneness

(b)

Legend
—3 Causal Relationship
<€—) Association

Size

Figure 2: Path diagram illustrating the confounding effect of size.

The path diagram in Figure 2 depicts a classic text-book example of confounding in a case-control study
[99][12]. 1 The path (a) represents the current causal beliefs about product metrics being an antecedent

! We make the analogy to a case-control study because it provides us with a well tested framework for defining and evaluating
confounding effects, as well as for conducting observational studies from which one can make stronger causal claims (if all known
confounders are controlled). However, for the sole purposes of this paper, the characteristics of a confounding effect have been
described and exemplified in [61] without resort to a case-control analogy.

V/18-10/04/00 11

to fault-proneness. The path (b) depicts a positive causal relationship between size and fault-proneness.
The path (c) depicts a positive association between product metrics and size.

If this path diagram is concordant with reality, then size distorts the relationship between product metrics
and fault-proneness. Confounding can result in considerable bias in the estimate of the magnitude of the
association. Size is a positive confounder, which means that ignoring size will always result in the
association between say coupling and fault-proneness to be more positive than it really is.

The potential confounding effect of size can be demonstrated through an example (adapted from [12]).
Consider the table in Table 1 that gave an odds ratio of 22.9. As mentioned earlier, this is representative
of the current univariate analyses used in the object-oriented product metrics validation literature (which
explicitly exclude size as a covariate nor employ a stratification on size).

Now, let us say that if we analyze the data seperately for small and large classes, we have the data in
Table 2 for the large classes, and the data in Table 3 for the small classes.™

Fault Proneness

Faulty Not Faulty
Coupling HC 90 9
LC 10 1

Table 2: A contingency table showing the results for only large classes of a hypothetical validation study.

Fault Proneness

Faulty Not Faulty
Coupling HC 1 10
LC 9 90

Table 3: A contingency table showing the results for only small classes of a hypothetical validation study.

In both of the above tables the odds ratio is one. By stratifying on size (i.e., controlling for the effect of
size), the association between coupling and fault-proneness has been reduced dramatically. This is
because size was the reason why there was an association between coupling and fault-proneness in the
first place. Once the influence of size is removed, the example shows that the impact of the coupling
metric disappears.

Therefore, an important improvement on the conduct of validation studies of object oriented metrics is to
control for the effect of size, otherwise one may be getting the illusion that the product metric is strongly
associated with fault-proneness, when in reality the association is much weaker or non-existent.

2.2.3 Evidence of a Confounding Effect
Now we must consider whether the path diagram in Figure 2 can be supported in reality.

There is evidence that object-oriented product metrics are associated with size. For example, in [22] the
Spearman rho correlation coefficients go as high as 0.43 for associations between some coupling and
cohesion metrics with size, and 0.397 for inheritance metrics, and both are statistically significant (at an
alpha level of say 0.1). Similar patterns emerge in the study reported in [19], where relatively large
correlations are shown. In another study [27] the authors display the correlation matrix showing the
Spearman correlation between a set of object-oriented metrics that can be collected from Shlaer-Mellor
designs and C++ LOC. The correlations range from 0.563 to 0.968, all statistically significant at an alpha
level 0.05. This also indicates very strong correlations with size.

'® Note that in this example the odds ratio of the size to fault-proneness association is 100, and the size to coupling association is
81.3. Therefore, it follows the model in Figure 2.

V/18-10/04/00 12

Associations between size and defects have been reported in non-object oriented systems [58]. For
object oriented programs, the relationship between size and defects is clearly visible in the study of [27],
where the Spearman correlation was found to be 0.759 and statistically significant. Another study of
image analysis programs written in C++ found a Spearman correlation of 0.53 between size in LOC and
the number of errors found during testing [55], and was statistically significant at an alpha level of 0.05.
Briand et al. [22] find statistically significant associations between 6 different size metrics and fault-
proneness for C++ programs, with a change in odds ratio going as high as 4.952 for one of the size
metrics.

General indications of a confounding effect are seen in Figure 3, which shows the associations between a
set of coupling metrics and fault-proneness, and with size from a recent study [22]. The association
between coupling metrics and fault-proneness is given in terms of the change in the odds ratio and the p-
value of the univariate logistic regression parameter. The association with size is in terms of the
Spearman correlation. As can be seen in Figure 3, all the metrics that had a significant relationship with
fault-proneness in the univariate analysis also had a significant correlation with size. Furthermore, there
is a general trend of increasing association between the coupling metric and fault-proneness as its
association with size increases.

Relationship with fault-proneness Relationship with size
Metric Change in odds p-value rho p-value
Ratio
CBO 2.012 <0.0001 0.3217 <0.0001
CBO’ 2.062 <0.0001 0.3359 <0.0001
RFC1 3.208 <0.0001 0.3940 <0.0001
RFCqo 8.168 <0.0001 0.4310 <0.0001
MPC 5.206 <0.0001 0.3232 <0.0001
ICP 7.170 <0.0001 0.3168 <0.0001
IH-ICP 1.090 0.5898 -0.124 0.1082
NIH-ICP 9.272 <0.0001 0.3455 <0.0001
DAC 1.395 0.0329 0.1753 0.0163
DAC’ 1.385 0.0389 0.1958 0.0088
OCAIC 1.416 0.0307 0.1296 0.0785
FCAEC 1.206 0.3213 0.0297 0.7010
OCMIC 1.133 0.3384 0.0493 0.4913
OCMEC 0.816 0.252 -0.0855 0.2528
IFMMIC 1.575 0.0922 0.2365 0.0019
AMMIC 1.067 0.6735 -0.1229 0.1115
OMMIC 4.937 <0.0001 0.2765 0.0001
OMMEC 1.214 0.2737 -0.0345 0.6553

Figure 3: Relationship between coupling metrics and fault-proneness, and between coupling metrics and
size from [22]. This covers only coupling to non-library classes. This also excludes the following metrics
because no results pertaining to the relationship with fault-proneness were presented: ACAIC, DCAEC,
IFCMIC, ACMIC, IFCMEC, and DCMEC. The definition of these metrics is provided in the appendix.

V/18-10/04/00 13

This leads us to conclude that, potentially, previous validation studies have overestimated the impact of
object oriented metrics on fault-proneness due to the confounding effect of size.

2.3 Summary

In this section the theoretical basis for object-oriented product metrics was presented. This states that
cognitive complexity is an intervening variable between the structural properties of classes and fault-
proneness. Furthermore, the empirical evidence supporting the validity of the object oriented metrics that
we study was presented, and this indicates that some of the metrics are strongly associated with fault-
proneness or the number of faults. We have also demonstrated that there is potentially a strong size
confounding effect in empirical studies to date that validate object oriented product metrics. This makes it
of paramount importance to determine whether such a strong confounding effect really exists.

If a size confounding effect is found, this means that previous validation studies have a positive bias and
may have exaggerated the impact of product metrics on fault-proneness. The reason is that studies to
date relied exclusively on univariate analysis to test the hypothesis that the product metrics are
associated with fault-proneness or the number of faults. The objective of the study below then is to
directly test the existence of this confounding effect and its magnitude.

3 Research Method

3.1 Data Source

Our data set comes from a telecommunications framework written in C++ [102]. The framework
implements many core design patterns for concurrent communication software. The communication
software tasks provided by this framework include event demultiplexing and event handler dispatching,
signal handling, service initialization, interprocess communication, shared memory management,
message routing, dynamic (re)configuration of distributed services, and concurrent execution and
synchronization. The framework has been used in applications such as electronic medical imaging
systems, configurable telecommunications systems, high-performance real-time CORBA, and web
servers. Examples of its application include in the Motorola Iridium global personal communications
system [101] and in network monitoring applications for telecommunications switches at Ericsson [100]. A
total of 174 classes from the framework that were being reused in the development of commercial
switching software constitute the system that we study. A total of 14 different programmers were involved
in the development of this set of classes.®

3.2 Measurement
3.2.1 Product Metrics

All product metrics are defined on the class, and constitute design metrics, and they have been presented
in Section 2.1.2. In our study the size variable was measured as non-comment source LOC for the class.
Measurement of product metrics used a commercial metrics collection tool that is currently being used by
a number of large telecommunications software development organizations.

3.2.2 Dependent Variable

For this product, we obtained data on the faults found in the library from actual field usage.'” Each fault
was due to a unique field failure and represents a defect in the program that caused the failure. Failures
were reported by the users of the framework. The developers of the framework documented the reasons
for each delta in the version control system, and it was from this that we extracted information on whether
a class was faulty.

'8 This number was obtained from the different login names of the version control system associated with each class.

71t has been argued that considering faults causing field failures is a more important question to address than faults found during
testing [9]. In fact, it has been argued that it is the ultimate aim of quality modeling to predict post-release fault-proness [50]. In at
least one study it was found that pre-release fault-proneness is not a good surrogate measure for post-release fault-proness, the
reason posited being that pre-release fault-proness is a function of testing effort [51].

V/18-10/04/00 14

A total of 192 faults were detected in the framework at the time of writing. These faults occurred in 70 out
of 174 classes. The dichotomous dependent variable that we used in our study was the detection or non-
detection of a fault. If one or more faults are detected then the class is considered to be faulty, and if not
then it is considered not faulty.

3.3 Data Analysis Methods
3.3.1 Testing for a Confounding Effect

It is tempting to use a simple approach to test for a confounding effect of size: examine the association
between size and fault-proneness. If this association is not significant at a traditional alpha level, then
conclude that size is not different between cases and controls (and hence has no confounding effect),
and proceed with a usual univariate analysis.

However, it has been noted that this is an incorrect approach [38]. The reason is that traditional
significance testing places the burden of proof on rejecting the null hypothesis. This means that one has
to prove that the cases and controls do differ in size. In evaluating confounding potential, the burden of
proof should be in the opposite direction: before discarding the potential for confounding, the researcher
should demonstrate that cases and controls do not differ on size. This means controlling the Type Il error
rather than the Type | error. Since one usually has no control over the sample size, this means setting
the alpha level to 0.25, 0.5, or even larger.

A simpler and more parsimonious approach is as follows. For an unmatched case-control study, a
measured confounding variable can be controlled through a regression adjustment [12][99]. A regression
adjustment entails including the confounder as another independent variable in a regression model. If the
regression coefficient of the object-oriented metric changes dramatically (in magnitude and statistical
significance) with and without the size variable, then this is a strong indication that there was indeed a
confounding effect [61]. This is further elaborated below.

3.3.2 Logistic Regression Model

Binary logistic regression is used to construct models when the dependent variable can only take on two
values, as in our case. It is most convenient to use a logistic regression (henceforth LR) model rather
than the contingency table analysis used earlier for illustrations since the model does not require
dichotomization of our product metrics.

The general form of an LR model is:
= ; Egn. 1
Hs+5 gx H
l+ e EFD ;ﬂlXIE

where 71 is the probability of a class having a fault, and the X;’s are the independent variables. The B
parameters are estimated through the (unconditional)*® maximization of a log-likelihood [61].

In a univariate analysis only one X, X, is included in the model, and this is the product metric that is
being validated:

= —1 Eqgn. 2
1+ e_(ﬂo+,5ixl)

When controlling for size, a second X, X,, is included that measures size:

m= 1 Eqgn. 3
1+ @ Borha+hxe)

'8 conditional logistic regression is used when there has been matching in the case-control study and each matched set is treated
as a stratum in the analysis [12].

V/18-10/04/00 15

In constructing our models, we could follow the previous literature and not consider interaction effects nor
consider any transformations (for example, see [4][8][17][18][19][22][106]). To err on the conservative
side, however, we did test for interaction effects between the size metric and the product metric for all
product metrics evaluated. In none of the cases was a significant interaction effect identified.
Furthermore, we performed a logarithmic transformation on our variables™ and re-evaluated all the
models. Our conclusions would not be affected by using the transformed models.*’ Therefore, we only
present the detailed results for the untransformed model.

The magnitude of an association can be expressed in terms of the change in odds ratio as the X, variable
changes by one standard deviation. This is explained in the appendix (Section 7), and is denoted by
AW . Since we construct two models as shown in Eqgn. 2 and Eqgn. 3 without and with controlling for size
respectively, we will denote the change in odds ratio as AW, and AW, |, respectively. As suggested
in [74], we can evaluate the extent to which the change in odds ratio changes as an indication of the
extent of confounding. We operationalize this as follows:

AZL// — %A(/IXI _A()[IX1+X2

Eqgn. 4

x100

X+ Xy

This gives the percent change in AW , by removing the size confounder. If this value is large then we

X +X;
can consider that class size does indeed have a confounding effect. The definition of “large” can be
problematic, however, as will be seen in the results, the changes are sufficiently big in our study that by
any reasonable threshold, there is little doubt.

3.3.3 Diagnostics and Hypothesis Testing

The appendix of this paper presents the details of the model diagnostics that were performed, and the
approach to hypothesis testing. Here we summarize these.

The diagnostics concerned checking for collinearity and identifying influential observations. We compute
the condition number specific to logistic regression, /] z, to determine whether dependencies amongst

the independent variables are affecting the stability of the model (collinearity). The A value provides us

an indication of which observations are overly influential. For hypothesis testing, we use the likelihood
ratio statistic, G, to test the significance of the overall model, the Wald statistic to test for the significance
of individual model parameters, and the Hosmer and Lemeshow R? value as a measure of goodness of
fit. Note that for the univariate model the G statistic and the Wald test are statistically equivalent, but we
present them both for completeness. All statistical tests were performed at an alpha level of 0.05.

4 Results
4.1 Descriptive Statistics

Box and whisker plots for all the product metrics that we collected are shown in Figure 4. These indicate
the median, the 25" and 75" quantiles. Outliers and extreme points are also shown in the figure.*

As is typical with product metrics their distributions are clearly heavy tailed. Most of the variables are
counts, and therefore their minimal value is zero. Variables NOC, NMO, and SIX have less than six
observations that are non-zero. Therefore, they were excluded from further analysis. This is the
approach followed in [22].

19 Given that product metrics are counts, an appropriate transformation to stablize the variance would be the logarithm.
% We wish to thank an anonymous reviewer for making this suggestion.

2 As will be noted that in some cases the minimal value is zero. For metrics such as CBO, WMC and RFC, this would be because
the class was defined in a manner similar to a C struct, with no methods associated with it.

V/18-10/04/00 16

The fact that few classes have NOC values greater than zero indicates that most classes in the system
are leaf classes. Overall, 76 of the classes had a DIT value greater than zero, indicating that they are
subclasses. The remaining 98 classes are at the root of the inheritance hierarchy. The above makes
clear that the inheritance hierarchy for this system was “flat”. Variable DIT has a small variation, but this
is primarily due to there not being a large amount of deep inheritance in this framework. Shallow
inheritance trees, indicating sparse use of inheritance, have been reported in a number of systems thus
far [27][30][32].

180
160
140 *
120 *
100
80 * 4 o *
60
40
20
O RN B
WMC RFC LCOM NMA
10
L
8
6
*
4 o) *
(o) F (o]
2 * *
* * *
e O PSS T e N S RS B e

DIT NOC CBO NMO SIX NPAVG

Figure 4: Box and whisker plots for all the object-oriented product metrics. Two charts are shown to
allow for the fact that two y-axis scales are required due to the different ranges.

The LCOM values may seem to be large. However, examination of the results from previous systems
indicate that they are not exceptional. For instance, in the C++ systems reported in [22], the maximum
LCOM value was 818, the mean 43, and the standard deviation was 106. Similarly, the system reported
in [19] had a maximum LCOM value of 4988, a mean of 99.6, and standard deviation of 547.7.

4.2 Correlation with Size

Table 4 shows the correlation of the metrics with size as measured in LOC. As can be seen all of the
associations are statistically significant except DIT. But DIT did not have much variation, and therefore a
weak association with size is not surprising. All metrics except LCOM and NPAVG have a substantial
correlation coefficient, indicating a non-trivial assocation with size.

V/18-10/04/00 17

e]e] LOC

Metric Rho p-value
WMC 0.88 <0.0001
DIT 0.098 0.19
CBO 0.46 <0.0001
REC 0.88 <0.0001
LCOM 0.24 0.0011
NMA 0.86 <0.0001
NPAVG 0.27 0.000256

Table 4: Spearman correlation of the object oriented metrics (only the ones that have more than five non-
zero values) with size in LOC.

4.3 Validation Results

The results of the univariate analyses and the models controlling for size for each of the remaining
metrics are presented in this section. The complete results are presented in Table 5.

V/18-10/04/00 18

Without Size Control Controlling for Size
Metric G H-L R® n Coeff. AW G H-L R® n Coeff. AW | Size Coeff. | gjze AW
(p-value) LR (p-value) (p-value) LR (p-value) (p-value)
WMC 10.1 0.043 2.24 0.0280 1.74 13.83 0.059 7.63 -0.0113 0.80 0.0141 2.374
(0.0015) (0.0022) (0.001) (0.3073) (0.0289)
DIT 0.17 0.0007 2.166 -0.1224 0.938 - - -
(0.6814) (0.3409)
CBO 4.16 0.018 1.792 0.2804 1.387 13.59 0.0579 3.59 0.0209 1.024 0.0105 1.9
(0.0414) (0.0266) (0.0011) (0.4495) (0.0030)
RFC 11.48 0.049 2.41 0.0408 1.84 16.51 0.071 7.843 -0.0207 0.73 0.0171 2.80
(0.0007) (0.0013) (0.0003) (0.2520) (0.0157)
LCOM 3.24 0.014 4.011 0.0074 1.33 13.91 0.059 4.682 0.0026 1.107 0.0101 1.86
(0.0721) (0.0391) (0.001) (0.2830) (0.0017)
NMA 12.83 0.055 2.76 0.0690 1.975 16.06 0.069 7.47 -0.0025 0.97 0.0127 2.15
(0.0003) (0.0007) (0.0003) (0.4783) (0.0402)
NPAVG 0 4.18e-6 1.75 0.0053 1.004 - - -
(0.975) (0.4875)

Table 5: Overall results of the models without control of size (univariate models), and with control of size. The G value is the likelihood ratio test
for the whole model. The “Coeff.” columns give the estimated parameters from the logistic regression model. The “p-value” is the one-sided test of
the null hypothesis for the coefficient. The R? values are based on the definition of R provided by Hosmer and Lemeshow [61]. Hence they are
referred to as the H-L R? values. For the second half of the table, presenting the results of the model with size control, the coefficient for the size
parameter is provided with its change in odds ratio. For the metrics where the model without size control is not significant (DIT and NPAVG) we
do not present the model with size control since given the hypothesised confounding effect, the results will not be substantively different from the
no size control model.

V18-10/04/00 19

431 WMC

As can be seen in Table 5, the univariate result for WMC is rather consistent with the previous literature
that explicitly evaluated WMC [4][10][106]. The overall goodness of fit is significant, and the regression
parameter is significant. Furthermore, the AW indicates that an increase of one standard deviation in the
value of WMC will increase the odds of a fault 1.74 times.

The results after the correction for size show that the regression parameter for WMC is no longer
statistically significant, but the impact of size is large and statistically significant. The condition number
does not indicate that collinearity is a problem. The WMC coefficient is negative, but this is not different
from zero after taking sampling variability into account. Table 5 shows that the inclusion of size in the

model has a dramatic impact on the validity of WMC, and is confirmed by a AZ(/I value of 117%. Hence
we can say that size has a confounding effect on WMC.

432 DIT

The results for the DIT metric as shown in Table 5 indicate that there is no relationship between DIT and
fault-proneness, with the overall G coefficient being non-significant. An analysis similar to that in [27]
whereby the classes were dichotomized into those involved in inheritance and those not involved was
performed. This subsequent analysis does not change the conclusions that DIT is not associated with
fault-proneness in this system.

433 CBO

The univariate analysis results for CBO indicate that CBO is associated with fault-proneness, with a
change in odds ratio of 1.387. This is consistent with previous literature that found CBO to be associated
with fault-proneness [22][19].

After controlling for the confounding impact of size, the effect of CBO on fault-proneness diminishes
considerably, with a AZ(/I value of 35%. Furthermore, CBO is no longer statistically significant. Also
note that the condition number does not indicate collinearity problems in this model.

434 RFC

The univariate results for RFC indicate that RFC is associated with fault-proneness, as one would expect
given the current literature [19][22][10][4][106]. However, after controlling for size, Table 5 shows that
RFC coefficient is no longer statistically significant, the Azt// value is 152%, and the multivariate model is
dominated by size. This indicates that there is a strong size confounding effect. The condition number
for this model does not indicate collinearity problems.

435 LCOM

As will be recalled, the evidence for the validity of the LCOM metric from previous studies is equivocal.
This is further evident here in Table 5, whereby the G statistic is not significant at an alpha level of 0.05,
but it does approach it.

The multivariate LCOM model in Table 5 clearly indicates that after controlling for size, there is no
evidence that LCOM is associated with fault-proneness. Again, this model does not show signs of
collinearity problems.

43.6 NMA

The univariate and multivariate results for the NMA metric present the same pattern, whereby at the
univariate level this metric is highly significant, but after controlling for size its effect disappears, with a

Nty value of 103%.

V/18-10/04/00 20

4.3.7 NPAVG

The results for the NPAVG metric in Table 5 indicate that there is no association at all with fault-
proneness, and in fact, this is the worst metric amongst those studied here.

4.4 Discussion of Results

The results that we obtained are remarkably consistent. They indicate that for some of the product
metrics that we studied, the univariate analyses demonstrate that they are indeed associated with fault-
proneness (namely WMC, CBO, RFC and NMA). After controlling for the size confounder, all of these
associations disappear, and the differences in the product metrics’ odds ratios indicates a strong and
classic confounding effect. The remaining product metrics were not associated with fault-proneness from
a univariate analysis, but this was predictable from previous work.

This result has two important implications. First, it casts doubt on the validity claims made in the past
about object-oriented metrics. It seems more plausible now that previous studies demonstrated an
association with fault-proneness or faults because of the confounding effect of size, which by itself leads
to greater fault-proneness or more faults. Second, it suggests caution in drawing validity conclusions from
univariate analyses, as is currently a common practice, in validation studies of object-oriented product
metrics.

To be clear, our results are not the last word on the validity of these metrics. Subsequent work with
different data sets may demonstrate that they are valid after controlling for size. Re-examination of
previous data sets may indicate that the metrics are still valid after controlling for size. What is clear is
that researchers in this area, especially those who have demonstrated valid metrics, are urged to re-
examine their data and determine the extent to which their conclusions would be contaminated after
controlling for size. Similarly, future validation studies should always control for size.

Indeed, a careful examination of some previous studies indicates that there are potentially some object-
oriented metrics that have an association with fault-proneness after controlling for size. For instance,
Briand et al. construct two multivariate models in two studies [19][22] using a forward selection procedure
and allowing a large number of metrics to enter. The purpose was to build prediction models only and not
to validate the metrics (recall that validation was demonstrated primarily through univariate results). When
size metrics are allowed to enter, the result was a model with size metrics in both cases. Notwithstanding
the inherent problems in using a forward selection procedurezz, one of the models included the NMA
metric [22], which had a significant impact on fault-proneness after controlling for size. This indicates
that, out of the set of common object-oriented metrics, there is possibly a subset of metrics that are
associated with fault-proneness for reasons other than their association with size.

More promising results were obtained after we re-analyzed the data of Cartwright and Shepperd [27].
They had collected early design metrics from Shlaer-Mellor models for a real-time telecommunications
system with 32 C++ classes and data on the number of faults per class. We analyzed this data using
multivariate least-squares models including LOC and each design metric in turn.?* We found their design
metrics to be strongly associated with the number of defects after controlling for size. Specifically, the
DELS (count of all delete accesses by a class), ATTRIB (count of attributes per class), READS (count of
all read accesses), WRITES (count of all write accesses), EVNTS (count of events per class in the state
model), and STATES (count of states per class) all had significant associations with the number of

2 A Monte Carlo simulation of forward selection indicated that in the presence of collinearity amongst the independent variables, the
proportion of ‘noise’ variables that are selected can reach as high as 74% [44]. Itis clear that in the object-oriented metrics
validation studies many of the metrics were correlated [19][22]. Harrell and Lee [53] note that when statistical significance is the
sole criterion for including a variable the number of variables selected is a function of the sample size, and therefore tends to be
unstable across studies. Furthermore, some general guidelines on the number of variables to consider in an automatic selection
procedure given the number of ‘faulty classes’ are provided in [54]. The studies that used automatic selection [19][22] had a much
larger number of variables than these guidelines. Therefore, clearly the variables selected through such a procedure should not be
construed as the best object-oriented metrics nor even as good predictors of fault-proneness.

2 We used the condition number of Belsley et al. [5] as a diagnostic for detecting collinearity. We did not find any serious
collinearity problems. The biggest condition number was for the STATES variable: 17.18. However, this is still smaller than the
recommended threshold of 30.

V/18-10/04/00 21

defects at a one tailed alpha level of 0.0.5.** Of course, metrics such as READ and WRITE, and EVNTS
and STATES are strongly correlated, but individually they seem to capture a structural property that has
an impact on faults.

45 Limitations

This study has a number of limitations which should be made clear in the interpretation of our results.
These limitations are not unigue to our study, but are characteristics of most of the product metrics
validation literature. However, it is of value to repeat them here.

This study did not account for the severity of faults. A failure that is caused by a fault may lead to a whole
network crash or to an inability to interpret an address with specific characters in it. These types of
failures are not the same, the former being more serious. Lack of accounting of fault severity was one of
the criticisms of the quality modeling literature in [49]. In general, unless the organization has a reliable
data collection program in place where severity is assigned, it is difficult to retrospectively obtain this data.
Therefore, the prediction models developed here can be used to identify classes that are prone to have
faults that cause any type of failure.

Even though our overall approach ought to compel caution in future validation studies, we do not claim
that none of the studied object oriented metrics are associated with fault-proneness. They were not
associated in our study, but they may be in other studies. One thing is clear, however: previous studies
that did not account for the confounding effect of size overestimate the impact of the product metrics on
fault-proneness.

It is also important to note that our conclusions are pertinent only to the fault-proneness dependent
variable, albeit this seems to be one of the more popular dependent variables in validation studies. We
do not make claims about the validity (or otherwise) of the studied object-oriented metrics when the
external attributes of interest are, for example, maintainability (say measured as effort to make a change)
or reliability (say measured as mean time between failures).

Even though we cast validation studies as case-control studies, we have been cautious in not making
claims of causality. There are other potential confounders that would have to be controlled in order to
gain any confidence that the product metrics are really causally affecting fault-proneness, for example,
the competence of the designers and programmers.®> Our argument has been to identify each of these
variables and incrementally perform better validation studies. Eventually, once a core set of confounding
variables has been identified, they ought to be controlled for in every validation study. The case-control
framework provides a set of techniques for controlling the confounders in the design of the study through
matching, or through various types of statistical adjustments.

5 Conclusions

The objective of the current paper was to examine if there is a confounding effect of class size in the
validation of object-oriented metrics. The metrics set that we studied are the CK metrics [30] and a
subset of the Lorenz and Kidd metrics [80]. Our focus in this paper was the prediction of class fault-
proneness for faults found in the field.

To attain this objective we first presented evidence from previous work indicating that there is a potential
confounding effect of size in the product metrics to fault-proneness relationship. We then described and

2 For this analysis we did a careful evaluation of influential observations using Cook’s distance [35][36]. In general, we found two
observations for each metric that can be considered influential. However, inclusion or removal of these observations, while
changing the estimated parameters and goodness of fit, does not change our conclusions.

% We did perform an analysis that accounted for the potential confounding effect of programmer capability. For a subset of the 174
classes we could reliably obtain the name of the primary developer. This subset consisted of 159 classes. To account for the
potential confounding effect of individual capability we included 13 dummy variables in each of the multivariate models to capture
the effect of the 14 different developers (see [61] for a description of LR models with design variables), in addition to the product
metric in question and the size metric. The estimated coefficients for the product metrics were slightly different from the values we
present in this paper, but their statistical significance followed exactly the trends shown in our results. Therefore, accounting for the
programmer confounder in addition to size would not change our conclusions.

V/18-10/04/00 22

justified an empirical methodology for examining whether there is a confounding effect. Finally, we
performed a study with a large C++ system to answer the confounding effect question.

When we performed our own empirical investigation we controlled for the confounding effect of class size.
Without controlling for class size our results are consistent with what one would expect from the current
literature, with most of the coefficients being statistically significant. When we controlled for class size all
of the effects disappeared, providing compelling evidence for a confounding effect of class size.

These results cast serious doubt on the empirical validity of object-oriented metrics since they suggest
that previous empirical validity results were strongly positively biased by the confounding effect of size.
We urge a re-examination of already validated object-oriented metrics after controlling for size. Our initial
attempts at re-analyzing existing data (after controlling for size) indicate that some design metrics are
indeed associated with faults after controlling for size. However, this ought to be performed on a broader
scale.

6 Acknowledgements

The authors wish to thank Janice Singer, Hakan Erdogmus, Oliver Laitenberger, Morven Gentleman,
James Miller, Barbara Kitchenham, and Anatol Kark for their comments on an earlier draft of this paper.
We also wish to thank the anonymous reviewers whose suggestions have improved the paper.

7 Appendix A: The Odds Ratio

In this appendix we provide a brief description of the odds ratio, which is a measure of association. We
take it that the dependent variable is dichotomous, fault or no fault. First we assume that the independent
variable is also dichotomous, say High Coupling and Low Coupling. Second, we relax this and explain
the odds ratio in the context of a logistic regression model and also the change in odds ratio. The latter is
used extensively in this paper.

The odds of an event, such as High Coupling, is the ratio of the number of ways the event can occur to
the number of ways the event cannot occur. Therefore, if the probability that a class has High Coupling is

denoted by p, then the odds of a class having high coupling is Consider the following
contingency table that could have been obtained from a validation study:

Fault Proneness

Faulty Not Faulty
Coupling HC a b
LC c d

Table 6: A contingency table showing the notation for potential results of a validation study.

The odds of a faulty class having High Coupling is:

%+C_a Egn. 5

y c
a+c

The odds of a not-faulty class having High Coupling is given by:

V/18-10/04/00 23

Eqgn. 6

Pb+d _
Thed

The ratio of the odds that the faulty class has High Coupling to the odds that the not-faulty class has High
Coupling is the odds ratio [47]:%°

o|o

_%_ad Eqgn. 7
¢_%_E

If coupling is not related to fault-proneness, then the odds ratio is equal to 1. If there is a positive
association, then the odds ratio will be greater than 1, and if there is a negative association, then the odds
ratio will be negative.

Now, assume that we are performing a univariate logistic regression with one coupling metric. Let D
denote the presence of a fault (D =1) or absence (D =0), and let X be our coupling metric. Then:

1
= = = Eqgn. 8
p. =Pr(D=1x) 1+ PoB
is the probability of a fault given the value of X. The probability of there not being a fault given the value
of X is:

1 e‘(ﬁo"'ﬁlx) Eqn 9
9, =1- p, =Pr(D =0x)=1- Tre BN 13 BB
1
One can then claim that out of every say 100 classes, ———————— X100 classes will have a fault. The
1+ e (Bo+BX)
odds of a class having a fault given the value of X is:
Py _ W(x) = glbeh Eqgn. 10

0«

The odds of a class having a fault if the product metric value X is increased by one standard deviation is:

Y(x +g) = gPothleod Eqn. 11

The change in odds by increasing the value of X by one standard deviation is:

qJ(X+0):eﬁ10 Eqn. 12

RATTC)

% This is the estimate of the population odds ratio.

V/18-10/04/00 24

8 Appendix B: Definition of Metrics

The following is a definition of the metrics that appear in Figure 3.

Metric Definition
Acronym
CBO This is defined in the main text of the paper.
CBO’ Same as CBO except that inheritance-based coupling is not counted [29].
RFC1 This is defined in the main text of the paper.
RFCoo Same as RFC1 except that methods indirectly invoked by methods in M are not included in
the response set [29].
MPC The number of method invocations in a class [78].
ICP The number of method invocations in a class, weighted by the number of parameters of the
invoked methods [76].
IH-ICP The same as ICP, but counts invocations of methods of ancestors of classes (i.e.,
inheritance-based coupling) only [76].
NIH-ICP The same as ICP, but counts invocations to classes not related through inheritance [76].
DAC The number of attributes in a class that have as their type another class [78].
DAC The number of different classes that are used as types of attributes in a class [78].
OCAIC These coupling metrics are counts of interactions between classes. The metrics distinguish
between the classes (friendship, inheritance, none), different types of interactions, and the
FCAEC locus of impact of the interaction [17].
The acronyms for the metrics indicate what types of interactions are counted:
OoCMIC
« The first or first two letters indicate the relationship (A: coupling to ancestor classes; D:
Descendents; F: Friend classes; IF: Inverse Friends; and O: other, i.e., none of the
OCMEC
above)
IFMMIC ¢ The next two letters indicate the type of interaction between classes ¢ and d (CA: there
is a class-attribute interaction between classes ¢ and d if ¢ has an attribute of type d;
AMMIC CM: there is a class-method interaction between classes ¢ and d if class ¢ has a
method with a parameter of type class d; MM: there is a method-method interaction
OMMIC between classes ¢ and d if ¢ invokes a method of d, or if a method of class d is passed
as parameter to a method of class c.
OMMEC e The last two letters indicate the locus of impact (IC: Import Coupling; and EC: Export

Coupling)

V/18-10/04/00

25

9 Appendix C: Data Analysis Details

This appendix presents the details of the data analysis that we performed. Specifically, it covers how we
determine the extent of collinearity, identify influential observations, and perform hypothesis tests.

9.1 Diagnosing Collinearity

Since in our study we control for the size confounder through regression adjustment, careful attention
should be paid to the detection and mitigation of potential collinearity. Previous studies have shown that
outliers can induce collinearities in regression models [83][98]. But also, it is known that collinearities
may mask influential observations [5]. This has lead some authors to recommend addressing potential
collinearity problems as a first step in the analysis [5], and this is what we do.

We first briefly review some common approaches for diagnosing collinearity in the context of ordinary
least squares regression (henceforth LS regression for short). This is important because the previously
suggested diagnostic for validating object-oriented metrics [22] was initailly defined for the LS case. We
then present some further diagnostics for the LR case.

One of the requirements for properly interpreting a LS regression model is that no one of the independent
variables are perfectly linearly correlated to one or more other independent variables. This situation is
referred to as perfect collinearity. When there is perfect collinearity then the regression surface is not
even defined. Perfect collinearity is rare, however, and therefore one talks about the degree of
collinearity. Recall that the confounder is associated with the product metric by definition, and therefore
one should not be surprised if strong collinearity exists.

The larger the collinearity, the greater the standard errors of the coefficient estimates. This means that t-
statistics for significance testing tend to be small and confidence intervals tend to be wide [28][92]. One
implication of this is that the conclusions drawn about the relative impacts of the independent variables
based on the regression coefficient estimates from the sample are less stable.

In the context of LR regression, Hosmer and Lemeshow [61] have illustrated the detrimental effects of
collinearity amongst the independent variables and between the independent variables and the constant
term. Specifically, the parameter standard errors tend to be grossly inflated. An empirical investigation
with a large data set indicated large errors and variability in maximume-likelihood parameter estimates [97].
Schaefer [98] performed a Monte Carlo simulation showing that for two independent variables (which is
our context) the impact of collinearity on the LR maximum likelihood estimates was severe but reduced as
sample size increases. In some cases the effect became almost negligible for sufficiently large sample
sizes (n=200) [98]. Even though our sample size approaches this number, to err on the conservative side
we explicitly diagnose and deal with collinearity problems if they are detected.

Hosmer and Lemeshow [61] suggest that diagnostics originally devised for LS regression can also be
applied for diagnosing collinearity for LR regression. Mennard [84] proposes using the tolerance statistic

to detect collinearity. This is defined as 1— Rjz, where the Rj2 is the multiple coefficient of determination

after regressing the jth independent variable on all of the remaining independent variables [104]. He

notes that a tolerance of less than 0.2 is cause for concern, and a tolerance of less than 0.1 indicates a
serious collinearity problem. This diagnostic is the reciprocal of the more common Variance Inflation
Factor (VIF) [28], where a value greater than 10 is taken as signaling a collinearity problem. A common
operationalization of the VIF is as follows. Assume that the linear regression model is given by:

y=ﬁot+l§XZ Eqn. 13

where Y is the dependent variable vector, vis a vector of ones, B, are the LS parameter estimates, and
Z is a nxk matrix of the X; raw data, with i =1...n and j =1...k. If we transform each of the X;
values using the correlation transform as follows [90]:

V/18-10/04/00 26

1 Hxij—XjH Eqgn. 14
\/n_—lﬁ s H

where S, is the standard deviation of the jth variable, then the correlation matrix is given by Z'Z, and

the VIFs are the diagonals of (ZTZ)_l.

Belsley [5] notes a number of important disadvantages of using the VIF as a collinearity diagnostic.
Namely, the common way of computing the VIF as above does not account for collinearities involving the
intercept, it cannot diagnose the number of near dependencies amongst the independent variables, and
there are no guidelines for interpreting the VIF values that are not ad-hoc.

Belsley et al. [5] propose the condition number as a collinearity diagnostic.”” First, it is easier if we
reformulate Eqn. 13 as follows:

y:ﬁx Eqn. 15

Here, there is a column of ones in the nX(k +1) X matrix to account for the fact that the intercept is
included in the models. The condition number is defined as follows:

A e Eqn. 16

I7:)l

min
where the A ’s are singular values obtained from the decomposition of the X matrix:

X =UDG' Eqn. 17

where the A’s are the non-negative diagonal values of D. Based on a number of experiments, Belsley
et al. suggest that a condition number greater than 30 indicates mild to severe collinearity.

The condition number can also be obtained from the eigenvalues of the XTX matrix as follows:

Hiax. Eqgn. 18
)umin

,7:

where (.. 2---2 M., are the eigenvalues. Belsley et al. emphasize that in the case where an

intercept is included in the model, the independent variables should not be centered since this can mask
the role of the constant in any near dependencies. Furthermore, the X matrix must be column
equilibrated, that is, each column should be scaled for equal Euclidean length. Without this, the
collinearity diagnostic produces arbitrary results. Column equilibration is achieved by scaling each

columnin X, X, by its norm [7]: xi/HXJ’H'

Briand et al. [22] suggest using the condition number as the basis for diagnosing collinearity in
multivariate LR models when validating object-oriented product metrics. They propose using the
eigenvalues obtained from a principal components analysis in conjunction with Eqn. 18. However, this
approach suffers from the problem of ignoring the intercept®® and its impact on near dependencies. It is

" Actually, they propose a number of diagnostic tools. However, for the purposes of our analysis with only two independent
variables we will consider the condition number only.

% Recall that only the independent variables are used in a principal components analysis.

V/18-10/04/00 27

known that collinearities can exist between the independent variables and the intercept, jointly* and
individually [104]. Therefore the Briand et al. approach can underestimate the extent of collinearity in a
particular data set. For example, from our data set the condition number computed from the results of a
principal components analysis for a model with the variables WMC, RFC, CBO, and LOC is 6.94,

whereas computing it directly using eigenvalues of the X™X ora singular value decomposition of the X
matrix gives a condition number of 10.62. It is therefore prudent to compute the eigenvalues or singular
values directly from X after the appropriate scaling.

Even though the condition number diagnostic was originally designated for LS regression, it has been
applied in some instances for diagnosing collinearity in LR regression [105]. However, this diagnostic has
been extended to the case of LR regression [42][108] by capitalizing on the analogy between the

independent variable cross-product matrix in LS regression to the information matrix in maximum
likelihood estimation, and therefore it would certainly be parsimonious to use the latter.

The information matrix in the case of LR regression is [61]:
f(ﬁ)=XT\7X Eqn. 19

where V is the diagonal matrix consisting of 77 (1— g) where 7T, is the probability estimate from the

LR model for observation i. Note that the variance-covariance matrix of B is given by | 'l([%). One can
then compute the eigenvalues from the information matrix after column equilibrating and compute the
condition number as in Eqn. 18. The general approach for non-LS models is described by Belsley [6]. In
this case, the same interpretive guidelines as for the LS condition number are used [108].

We therefore use this as the condition number in diagnosing collinearity in our models that include the
size confounder, and will denote it as /7, ;. In principle, if severe collinearity is detected we would use

logistic ridge regression30 to estimate the model parameters [97][98]. However, since we do not detect
severe collinearity in our study, we will not describe the ridge regression procedure here.

9.2 Hypothesis Testing

The next task in evaluating the LR model is to determine whether any of the regression parameters are
different from zero, i.e., test H, : B, = B, =--- = B, = 0. This can be achieved by using the likelihood
ratio G statistic [61]. One first determines the log-likelihood for the model with the constant term only,
and denote this |O for the ‘null’ model.*! Then the log-likelihood for the full model with the Kk parameters

several columns of the data matrix become jointly, but not individually, collinear with the intercept, for example, when a linear
combination of several non-constant independent variables is nearly constant.

% Ridge regression produces biased estimates of the parameters, but they are more robust in situations with high collinearity.
* This is defined as:

n

l, = Z{nlln(nl)+n0 In(n,) - nin(n}

where N = z Y and Ny, = Z(l— yl)

V/18-10/04/00 28

is determined, and denote this |,.* The G statistic is given by 2(|k —IO) which has a x? distribution
with K degrees of freedom.*®

If the likelihood ratio test is found to be significant at an @ = 0.05 then we can proceed to test each of

A

B
the individual coefficients. This is done using a Wald statistic, ‘(,Jé_) , which follows a standard normal
Se\p;
j

distribution. These tests were performed at a one-tailed alpha level of 0.05. We used one-tailed test
since all of our alternative hypotheses are directional: there is a positive association between the metric
and fault-proneness.

In previous studies another descriptive statistic has been used, namely an R? statistic that is analogous
to the multiple coefficient of determination in LS regression [22][19]. This is defined as R? = Q and
0
may be interpreted as the proportion of uncertainty explained by the model. Ideally, since the analogy to
LS regression is the driving force behind such a statistic, it should vary between 1 and 0. However,
Hosmer and Lemeshow [61] note that when there are groups in the data the maximum value will not be 1.
A group occurs when there are multiple observations that have exactly the same values on the
independent variables. In validation studies of product metrics this frequently happens (for example, the
data clustering in very few groups with only one independent variable) because the product metrics are
counts (i.e., integers). To be specific, in our data set there were 48 groups for the WMC metric (recall that
we have 174 observations), 40 groups for the RFC metric, 6 groups for the CBO metric, 39 groups for the
LCOM metric, and 31 groups for the NMA metric.

Hosmer and Lemeshow [61] suggest an alternative formulation for R? that corrects for this, and still
allows for the reduction in uncertainty interpretation. It should be recalled that this descriptive statistic will
in general have low values compared to what one is accustomed to in a LS regression.** In our study we

will use the corrected Hosmer and Lemeshow R? statistic as an indicator of the quality of the LR model.

9.3 Influence Analysis

Influence analysis is performed to identify influential observations (i.e., ones that have a large influence
on the LR regression model). This can be achieved through deletion diagnostics. For a data set with N
observations, estimated coefficients are recomputed N times, each time deleting exactly one of the

% This is defined as:

n

= Z{Yi In(7(x)) + (L~ y,)In(1-72(x)} .

% Note that we are not concerned with testing whether the intercept is zero or not since we do not draw substantive conclusions
from the intercept in a validation study. If we were, we would use the log-likelihood for the null model which assigns a probability of
0.5 to each response.

. . 2 - . 2. . .
% Hosmer and Lemeshow [61] recommend against using the R? statistic stating that “ R%is nothing more than an expression of
the likelihood ratio test and, as such, is not a measure of goodness-of-fit. This likelihood ratio test compares fitted values under two
models rather than comparing observed values to those fitted under one model.” However, Menard [85] notes that the comparison

of fitted values under two models is one way to interpret the traditional R2 coefficient of determination in OLS regression.
Therefore, if there is no conceptual objection to its use for OLS regression, there ought to be none for logistic regression. An
alternative measure of goodness-of-fit was proposed by Maddala [82]. In an OLS context this can be interpreted in terms of the
geometric mean reduction in error per observation produced by the full model as opposed to the model with only the intercept [37].
Nagelkerke [88] notes that this statistic cannot have a value of 1 even when the model fits the data perfectly, and proposed a
correction for the maximum value. However, this coefficient measures a criterion that is not optimized in maximum likelihood logistic
regression, and therefore the Hosmer and Lemeshow [88] is preferred. Furthermore, Menard [85], based on a conceptual review
and an empirical demonstration, recommended the Hosmer and Lemeshow coefficient because it is the most independent of the
base rate (in our case, this is the proportion of classes that are faulty), making it a more generally useful measure of goodness-of-fit.

V/18-10/04/00 29

observations from the model fitting process. This is similar to the approach advocated by Briand et al.
[22] for identifying outliers in multivariate LR models used in validating object-oriented metrics.
Specifically, they use the Mahalanobis distance from the centroid, removing each observation in turn
before computing the centroid.

However, this approach has some deficiencies. First, it is important to note that an outlier is not
necessarily an influential observation [96]. For example, an observation may be further away from the
other observations but may be right on the regression surface. Furthermore, influential observations may
be clustered in groups. For example, if there are say two independent variables in our model and there
are five out of the N observations that have exactly the same values on these two variables, then these 5
observations are a group. Now, assume that this group is multivariately different from all of the other
Nn—5 observations. Which one of these 5 would be considered an outlier ? A leave-one-out approach
may not even identify any one of these observations as being different from the rest since in each run the
remaining 4 observations will be included in computing the centroid. Such masking effects are
demonstrated in [5].

Therefore, a more principled approach to the detection of influential observations is necessary. The first
step is to identify the groups of observations with the same values on the independent variables. Similar
to Cook’s distance diagnostics [35][36] that are commonly used in LS regression to identify influential

observations, Pergibon has defined the A diagnostic [93] to identify influential groups in LR regression.
The AL diagnostic is a standardized distance between the parameter estimates when a group is
included and when it is not included in the model.

We use the AS diagnostic in our study to identify influential groups. For groups that are deemed
influential we investigate this to determine if we can identify substantive reasons for the differences. We
found one observation that consistently had a large Af value. However, its removal does not change
our conclusions.

V/18-10/04/00 30

10References

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
9]
(10]

(11]
(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

(20]

(21]

M. Almeida, H. Lounis, and W. Melo: “An Investigation on the Use of Machine Learned Models for
Estimating Correction Costs”. In Proceedings of the 20" International Conference on Software
Engineering, pages 473-476, 1998.

A. Baker, J. Bieman, N. Fenton, D. Gustafson, A. Mellon, and R. Whitty: “A Philosophy for Software
Measurement”. In Journal of Systems and Software, 12:277-281, 1990.

V. Basili, S. Condon, K. El Emam, R. Hendrick, and W. Melo: “Characterizing and Modeling the
Cost of Rework in a Library of Reusable Software Components”. In Proceedings of the 19"
International Conference on Software Engineering, 1997.

V. Basili, L. Briand and W. Melo: “A Validation of Object-Oriented Design Metrics as Quality
Indicators”. In IEEE Transactions on Software Engineering, 22(10):751-761, 1996.

D. Belsley, E. Kuh, and R. Welsch: Regression Diagnostics: Identifying Influential Data and Sources
of Collinearity. John Wiley and Sons, 1980.

D. Belsley: Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley and
Sons, 1991.

D. Belsley: “A Guide to Using the Collinearity Diagnostics”. In Computer Science in Economics and
Management, 4:33-50, 1991.

S. Benlarbi and W. Melo: “Polymorphism Measures for Early Risk Prediction”. In Proceedings of the
21% International Conference on Software Engineering, pages 334-344, 1999.

A. Binkley and S. Schach: “Prediction of Run-Time Failures Using Static Product Quality Metrics”. In
Software Quality Journal, 7:141-147, 1998.

A. Binkley and S. Schach: “Validation of the Coupling Dependency Metric as a Predictor of Run-
Time Fauilures and Maintenance Measures”. In Proceedings of the 20" International Conference on
Software Engineering, pages 452-455, 1998.

D. Boehm-Davis, R. Holt, and A. Schultz: “The Role of Program Structure in Software
Maintenance”. In International Journal of Man-Machine Studies, 36:21-63, 1992.

N. Breslow and N. Day: Statistical Methods in Cancer Research — Volume 1 — The Analysis of Case
Control Studies, IARC, 1980.

L. Briand, W. Thomas, and C. Hetmanski: “Modeling and Managing Risk Early in Software
Development”. In Proceedings of the International Conference on Software Engineering, pages 55-
65, 1993.

L. Briand, V. Basili, and C. Hetmanski: “Developing Interpretable Models with Optimized Set
Reduction for Identifying High-Risk Software Components”. In IEEE Transactions on Software
Engineering, 19(11):1028-1044, 1993.

L. Briand, K. El Emam, and S. Morasca: “Theoretical and Empirical Validation of Software Product
Measures”. International Software Engineering Research Network, Technical Report ISERN-95-03,
1995.

L. Briand, J. Daly, and J. Wuest: “A Unified Framework for Cohesion Measurement in Object-
Oriented Systems”. In Empirical Software Engineering, 3:65-117, 1998.

L. Briand, P. Devanbu, and W. Melo: “An Investigation into Coupling Measures for C++". In
Proceedings of the 19" International Conference on Software Engineering, 1997.

L. Briand, J. Daly, V. Porter, and J. Wuest: “Predicting Fault-Prone Classes with Design Measures
in Object Oriented Systems”. In Proceedings of the International Symposium on Software Reliability
Engineering, pages 334-343, 1998.

L. Briand, J. Wuest, S. lkonomovski, and H. Lounis: “A Comprehensive Investigation of Quality
Factors in Object-Oriented Designs: An Industrial Case Study”. International Software Engineering
Research Network technical report ISERN-98-29, 1998.

L. Briand, J. Daly, and J. Wuest: “A Unified Framework for Cohesion Measurement in Object-
Oriented Systems”. In Empirical Software Engineering, 3:65-117, 1998.

L. Briand, J. Daly, and J. Wuest: “A Unified Framework for Coupling Measurement in Object-
Oriented Systems”. In IEEE Transactions on Software Engineering, 25(1):91-121, 1999.

V/18-10/04/00 31

(22]

(23]

(24]

(25]
(26]
[27]
(28]
(29]
(30]
(31]
(32]
(33]

(34]

(35]
(36]
(37]
(38]

(39]

[40]

[41]

[42]

(43]

[44]

L. Briand, J. Wuest, J. Daly, and V. Porter: “Exploring the Relationships Between Design Measures
and Software Quality in Object-Oriented Systems”. In Journal of Systems and Software, 51:245-
273, 2000.

L. Briand, E. Arisholm, S. Counsell, F. Houdek, and P. Thevenod-Fosse: “Empirical Studies of
Object-Oriented Artifacts, Methods, and Processes: State of the Art and Future Direction”. In
Empirical Software Engineering, 4(4):387-404, 1999.

F. Brite e Abreu and R. Carapuca: “Object-Oriented Software Engineering: Measuring and
Controlling the Development Process”. In Proceedings of the 4™ International Conference on
Software Quality, 1994.

F. Brito e Abreu and W. Melo: “Evaluating the Impact of Object-Oriented Design on Software
Quality”. In Proceedings of the 3" International Software Metrics Symposium, pages 90-99, 1996.
M. Cartwright: “An Empirical View of Inheritance”. In Information and Software Technology, 40:795-
799, 1998.

M. Cartwright and M. Shepperd: “An Empirical Investigation of an Object-Oriented Software
System”. To appear in IEEE Transactions on Software Engineering.

S. Chaterjee and B. Price: Regression Analysis by Example. John Wiley and Sons, 1991.

S. Chidamber and C. Kemerer: “Towards a Metrics Suite for Object Oriented Design”. In
Proceedings of the Conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA’91). Published in SIGPLAN Notices, 26(11):197-211, 1991.

S. Chidamber and C. Kemerer: “A Metrics Suite for Object-Oriented Design”. In IEEE Transactions
on Software Engineering, 20(6):476-493, 1994.

S. Chidamber and C. Kemerer: “Authors’ Reply”. In IEEE Transactions on Software Engineering,
21(3):265, 1995.

S. Chidamber, D. Darcy, and C. Kemerer: “Managerial Use of Metrics for Object Oriented Software:
An Exploratory Analysis”. In IEEE Transactions on Software Engineering, 24(8):629-639, 1998.

N. Churcher and M. Shepperd: “Comments on ‘A Metrics Suite for Object Oriented Design™. In
IEEE Transactions on Software Engineering, 21(3):263-265, 1995.

F. Coallier, J. Mayrand, and B. Lague: “Risk Management in Software Product Procurement”. In K.
El Emam and N. H. Madhavji (eds.): Elements of Software Process Assessment and Improvement,
IEEE CS Press, 1999.

R. Cook: “Detection of Influential Observations in Linear Regression”. In Technometrics, 19:15-18,
1977.

R. Cook: “Influential Observations in Linear Regression”. In Journal of the American Statistical
Association, 74:169-174, 1979.

D. Cox and N. Wermuth: “A Comment on the Coefficient of Determination for Binary Responses”. In
The American Statistician, 46:1-4, 1992.

L. Dales and H. Ury: “An Improper Use of Statistical Significance Testing in Studying Covariables”.
In International Journal of Epidemiology, 7(4):373-375, 1978.

J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood: “Issues on the Object-Oriented Paradigm: A
guestionnaire Survey”. Research Report EFoCS-8-95, Department of Computer Science,
University of Strathclyde, 1995.

J. Daly, M. Wood, A. Brooks, J. Miller, and M. Roper: “Structured Interviews on the Object-Oriented
Paradigm”. Research Report EFoCS-7-95, Department of Computer Science, University of
Strathclyde, 1995.

J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood: “Evaluating Inheritance Depth on the
Maintainability of Object-Oriented Software”. In Empirical Software Engineering, 1(2):109-132,
1996.

C. Davies, J. Hyde, S. Bangdiwala, and J. Nelson: “An Example of Dependencies Among Variables
in a Conditional Logistic Regression”. In S. Moolgavkar and R. Prentice (eds.): Modern Statistical
Methods in Chronic Disease Edpidemiology. John Wiley and Sons, 1986.

I. Deligiannis and M. Shepperd: “A Review of Experimental Investigations into Object-Oriented
Technology”. In Proceedings of the Fifth IEEE Workshop on Empirical Studies of Software
Maintenance, pages 6-10, 1999.

S. Derksen and H. Keselman: “Backward, Forward and Stepwise Automated Subset Selection
Algorithms: Frequency of Obtaining Authentic and Noise Variables”. In British Journal of
Mathematical and Statistical Psychology, 45:265-282, 1992.

V/18-10/04/00 32

[45]
[46]

[47]
(48]

[49]
[50]
[51]

[52]
(53]

(54]

[55]
[56]
[57]
(58]
[59]
[60]
(61]
[62]

[63]

(64]

(65]

[66]

[67]

[68]

(69]

[70]

[71]

J. Dvorak: “Conceptual Entropy and lIts Effect on Class Hierarchies”. In IEEE Computer, pages 59-
63, 1994.

C. Ebert and T. Liedtke: “An Integrated Approach for Criticality Prediction”. In Proceedings of the 6"
International Symposium on Software Reliability Engineering, pages 14-23, 1995.

B. Everitt: The Analysis of Contingency Tables. Chapman and Hall, 1992.

N. Fenton: “Software Metrics: Theory, Tools and Validation”. In Software Engineering Journal,
pages 65-78, January 1990.

N. Fenton and M. Neil: “A Critique of Software Defect Prediction Models”. In IEEE Transactions on
Software Engineering, 25(5):676-689, 1999.

N. Fenton and M. Neil: “Software Metrics: Successes, Failures, and New Directions”. In Journal of
Systems and Software, 47:149-157, 1999.

N. Fenton and N. Ohlsson: “Quantitative Analysis of Faults and Failures in a Complex Software
System”. To appear in IEEE Transactions on Software Engineering.

L. Gordis: Epidemiology. W. B. Saunders, 1996.

F. Harrell and K. Lee: “Regression Modelling Strategies for Improved Prognostic Prediction”. In
Statistics in Medicine, 3:143-152, 1984.

F. Harrell, K. Lee, and D. Mark: “Multivariate Prognostic Models: Issues in Developing Models,
Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors”. In Statistics in
Medicine, 15:361-387, 1996.

R. Harrison, L. Samaraweera, M. Dobie, and P. Lewis: “An Evaluation of Code Metrics for Object-
Oriented Programs”. In Information and Software Technology, 38:443-450, 1996.

W. Harrison: “Using Software Metrics to Allocate Testing Resources”. In Journal of Management
Information Systems, 4(4):93-105, 1988.

R. Harrison, S. Counsell, and R. Nithi; “Coupling Metrics for Object Oriented Design”. In
Proceedings of the 5™ International Symposium on Software Metrics, pages 150-157, 1998.

L. Hatton: “Is Modularization Always a Good Idea ?”. In Information and Software Technology,
38:719-721, 1996.

L. Hatton: “Does OO Sync with How We Think ?”. In IEEE Software, pages 46-54, May/June 1998.
B. Henderson-Sellers: Software Metrics. Prentice-Hall, 1996.

D. Hosmer and S. Lemeshow: Applied Logistic Regression. John Wiley & Sons, 1989.

J. Hudepohl, S. Aud, T. Khoshgoftaar, E. Allen, and J. Mayrand: “EMERALD: Software Metrics and
Models on the Desktop”. In IEEE Software, 13(5):56-60, 1996.

J. Hudepohl, S. Aud, T. Khoshgoftaar, E. Allen, and J. Mayrand: “Integrating Metrics and Models for
Software Risk Assessment”. In Proceedings of the 7" International Symposium on Software
Reliability Engineering, pages 93-98, 1996.

ISO/IEC 9126: Information Technology — Software Product Evaluation — Quality Characteristics and
Guidelines for their Use. International Organization for Standardization and the International
Electrotechnical Commission, 1991.

ISO/IEC DIS 14598-1: Information Technology — Software Product Evaluation; Part 1: Overview.
International Organization for Standardization and the International Electrotechnical Commission,
1996.

M. Jorgensen: “Experience with the Accuracy of Software Maintenance Task Effort Prediction
Models”. In IEEE Transactions on Software Engineering, 21(8):674-681, 1995.

M. Kaaniche and K. Kanoun: “Reliability of a Commercial Telecommunications System”. In
Proceedings of the International Symposium on Software Reliability Engineering, pages 207-212,
1996.

J. Kearney, R. Sedlmeyer, W. Thompson, M. Gray, and M. Adler: “Software Complexity
Measurement”. In Communications of the ACM, 29(11):1044-1050, 1986.

T. Khoshgoftaar, E. Allen, K. Kalaichelvan, and N. Goel: “The Impact of Software Evolution and
Reuse on Software Quality”. In Empirical Software Engineering: An International Journal, 1:31-44,
1996.

T. Khoshgoftaar, E. Allen, R. Halstead, G. Trio, and R. Flass: “Process Measures for Predicting
Software Quality”. In IEEE Computer, 31(4):66-72, 1998.

T. Khoshgoftaar, E. Allen, W. Jones, and J. Hudepohl: “Which Software Modules Have Faults that
will be Discovered by Customers ?”. In Journal of Software Maintenance: Research and Practice,
11(1):1-18, 1999.

V/18-10/04/00 33

[72]

(73]
[74]
[75]

[76]

[77]
(78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
(86]
(87]
(88]
(89]

[90]
[91]

[92]
(93]
[94]
[95]
[96]
[97]

(98]

[99]

T. Khoshgoftaar, E. Allen, W. Jones, and J. Hudepohl: “Classification Tree Models of Software
Quality Over Multiple Releases”. In Proceedings of the International Symposium on Software
Reliability Engineering, pages 116-125, 1999.

B. Kitchenham, S-L Pfleeger, and N. Fenton: “Towards a Framework for Software Measurement
Validation”. In IEEE Transactions on Software Engineering, 21(12):929-944, 1995.

D. Kleinbaum, L. Kupper, and H. Morgenstern: Epidemiologic Research: Principles and Quantitative
Methods. Van Nostrand Reinhold, 1982.

F. Lanubile and G. Visaggio: “Evaluating Predictive Quality Models Derived from Software
Measures: Lessons Learned”. In Journal of Systems and Software, 38:225-234, 1997.

Y. Lee, B. Liang, S. Wu, and F. Wang: “Measuring the Coupling and Cohesion of an Object-
Oriented Program Based on Information Flow”. In Proceedings of the International Conference on
Software Quality, 1995.

M. Leijter, S. Meyers, and S. Reiss: “Support for Maintaining Object-Oriented Programs”. In IEEE
Transactions on Software Engineering, 18(12):1045-1052, 1992.

W. Li and S. Henry: “Object-Oriented Metrics that Predict Maintainability”. In Journal of Systems and
Software, 23:111-122, 1993.

R. Lindsay and A. Ehrenberg: “The Design of Replicated Studies”. In The American Statistician,
47(3):217-228, 1993.

M. Lorenz and J. Kidd: Object-Oriented Software Metrics. Prentice-Hall, 1994.

M. Lyu, J. Yu, E. Keramides, and S. Dalal: “ARMOR: Analyzer for Reducing Module Operational
Risk”. In Proceedings of the 25" International Symposium on Fault-Tolerant Computing, pages
137-142, 1995.

G. Maddala: Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University
Press, 1983.

R. Mason and R. Gunst: “Outlier-Induced Collinearities”. In Technometrics, 27:401-407, 1985.

S. Menard: Applied Logistic Regression Analysis. Sage Publications, 1995.

S. Menard: “Coefficients of Determination for Multiple Logistic Regression Analysis”. In The
American Statistician, 54(1):17-24, 2000.

K-H Moller and D. Paulish: “An Empirical Investigation of Software Fault Distribution”. In
Proceedings of the First International Software Metrics Symposium, pages 82-90, 1993.

J. Munson and T. Khoshgoftaar: “The Detection of Fault-Prone Programs”. In IEEE Transactions on
Software Engineering, 18(5):423-433, 1992.

N. Nagelkerke: “A Note on a General Definition of the Coefficient of Determination”. In Biometrika,
78(3):691-692, 1991.

P. Nesi and T. Querci: “Effort Estimation and Prediction of Object-Oriented Systems”. In Journal of
Systems and Software, 42:89-102, 1998.

J. Neter, W. Wasserman, and M. Kunter: Applied Linear Statistical Models. Irwin, 1990.

N. Ohlsson and H. Alberg: “Predicting Fault-Prone Software Modules in Telephone Switches”. In
IEEE Transactions on Software Engineering, 22(12):886-894, 1996.

. Pedhazur: Multiple Regression in Behavioral Research. Harcourt Brace Jovanovich 1982.

. Pergibon: “Logistic Regression Diagnostics”. In The Annals of Statistics, 9(4):705-724, 1981.

. Pressman: Software Engineering: A Practitioner’s Approach. McGraw Hill, 1997.

. Rothman and S. Greenland: Modern Epidemiology. Lippincott-Raven, 1998.

. Rousseeuw and A. Leroy: Robust Regression and Outlier Detection. John Wiley & Sons, 1987.

. Schaefer, L. Roi, and R. Wolfe: “A Ridge Logistic Estimator”. In Communications in Statistics —
Theory and Methods, 13(1):99-113, 1984.

R. Schaefer: “Alternative Estimators in Logistic Regression when the Data are Collinear”. In The
Journal of Statistical Computation and Simulation, 25:75-91, 1986.

J. Schlesselman: Case-Control Studies: Design, Conduct, Analysis. Oxford University Press, 1982.

DUV ADOVOM

[100] D. Schmidt and P. Stephenson: “Experiences Using Design Patterns to Evolve System Software

Across Diverse OS Platforms”. In Proceedings of the o European Conference on Object Oriented
Programming, 1995.

[101] D. Schmidt: “A System of Reusable Design Patterns for Communication Software”. In S. Berzuk

(ed.): The Theory and Practice of Object Systems, Wiley, 1995.

[102] D. Schmidt: “Using Design Patterns to Develop Reusable Object-Oriented Communication

Software”. In Communications of the ACM, 38(10):65-74, 1995.

V/18-10/04/00 34

[103] S. Shlaer and S. Mellor;: Object-Oriented Systems Analysis: Modelling the World in Data. Prentice-
Hall, 1988.

[104] S. Simon and J. Lesage: “The Impact of Collinearity Involving the Intercept Term on the Numerical
Accuracy of Regression”. In Computer Science in Economics and Management, 1:137-152, 1988.

[105] K. Smith, M. Slattery, and T. French: “Collinear Nutrients and the Risk of Colon Cancer”. In Journal
of Clinical Epidemiology, 44(7):715-723, 1991.

[106] M-H. Tang, M-H. Kao, and M-H. Chen: “An Empirical Study on Object Oriented Metrics”. In
Proceedings of the Sixth International Software Metrics Symposium, pages 242-249, 1999.

[107] B. Unger and L. Prechelt: “The Impact of Inheritance Depth on Maintenance Tasks — Detailed
Description and Evaluation of Two Experiment Replications”. Technical Report 19/1998, Fakultat
fur Informatik, Universitaet Karlsruhe, 1998.

[108] Y. Wax: “Collinearity Diagnosis for Relative Risk Regression Analysis: An Application to
Assessment of Diet-Cancer Relationship in Epidemiological Studies”. In Statistics in Medicine,
11:1273-1287, 1992.

[109] S. Wiedenbeck, V. Ramalingam, S. Sarasamma, and C. Corritore: “A Comparison of the
Comprehension of Object-Oriented and Procedural Programs by Novice Programmers”. In
Interacting with Computers, 11(3):255-282, 1999.

[110] N. Wilde, P. Matthews, and R. Huitt: “Maintaining Object-Oriented Software”. In IEEE Software,
pages 75-80, January 1993.

V/18-10/04/00 35

