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Abstract
ISO/IEC 15504 is an emerging international standard on software process assessment. It defines a
number of software engineering processes, and a scale for measuring their capability. A basic premise
of the measurement scale is that higher process capability is associated with better project performance
(i.e., predictive validity).  This paper describes an empirical study that evaluates the predictive validity of
the capability measures of the ISO/IEC 15504 software development processes (i.e., develop software
design, implement software design, and integrate and test).  Assessments using ISO/IEC 15504 were
conducted on projects world wide over a period of two years.  Performance measures on each project
were also collected using questionnaires, such as the ability to meet budget commitments and staff
productivity.  The results provide evidence of predictive validity for the development process capability
measures used in ISO/IEC 15504 for large organizations (defined as having more than 50 IT staff).
Furthermore, it was found that the “Develop Software Design” process was associated with most project
performance measures. For small organizations evidence of predictive validity was rather weak. This
can be interpreted in a number of different ways: that the measures of capability are not suitable for
small organizations, or that software development process capability has less affect on project
performance for small organizations.

1 Introduction
Improving software processes is by now recognized as an important endeavor for software organizations.

A commonly used paradigm for improving software engineering practices is the benchmarking paradigm

(Card, 1991).  This involves identifying an ‘excellent’ organization or project and documenting its

practices.  It is then assumed that if a less-proficient organization or project adopts the practices of the

excellent one, it will also become excellent.  Such best practices are commonly codified in an assessment

model, like the SW-CMM1 (Software Engineering Institute, 1995) or the emerging ISO/IEC 15504

international standard (El Emam et al., 1998).  These assessment models also order the practices in a

recommended sequence of implementation, hence providing a predefined improvement path.2

                                                       
1 The Capability Maturity Model for Software.
2 The logic of this sequencing is that this is the natural evolutionary order in which, historically, software organizations improve
(Humphrey, 1988), and that practices early in the sequence are prerequisite foundations to ensure the stability and optimality of
practices implemented later in the sequence (Software Engineering Institute, 1995).
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Improvement following the benchmarking paradigm almost always involves a software process

assessment (SPA).3 A SPA provides a quantitative score reflecting the extent of an organization’s or

project’s implementation of the best practices defined in the assessment model.  The more of these best

practices that are adopted, the higher this score is expected to be.  The obtained score provides a

baseline of current implementation of best practices, serves as a basis for making process improvement

investment decisions, and also provides a means of tracking improvement efforts.

The emerging ISO/IEC 15504 international standard is an attempt to harmonize the existing assessment

models that are in common use. It defines a scheme for measuring the capability of software processes.

A basic premise of 15504 is that the quantitative score from the assessment is associated with the

performance of the organization or project. In fact, this is a premise of all assessment models. Therefore,

improving the software engineering practices according to the assessment model is expected to

subsequently improve the performance. This is termed the predictive validity of the process capability

score.  Empirically validating the verisimilitude of such a premise is of practical importance since

substantial process improvement investments are made by organizations guided by the assessment

results.

While there have been some correlational studies that substantiate the above premise, none evaluated

the predictive validity of the process capability measures defined in ISO/IEC 15504.  The implication then

is that it is not possible to substantiate claims that improvement by adopting the practices stipulated in

15504 really results in performance improvements.

In this paper we empirically investigate the relationship between the capability of the software

development processes (namely design, coding, and integration and testing) as defined in the emerging

ISO/IEC 15504 international standard4 and the performance of software projects.  The study was

conducted in the context of the SPICE Trials, which is an international effort to empirically evaluate the

emerging international standard world wide. To our knowledge, this is the first study to evaluate the

predictive validity of software development process capability using the ISO/IEC 15504 measure of

process capability.

Briefly, our results can be summarized in the form of Table 1. This indicates that for small organizations

(less than or equal to 50 IT staff), we only found evidence that the “Develop Software Design” process is

related with a project’s ability to meet schedule commitments.  For large organizations, the same process

is related to five different project performance measures, including customer satisfaction and the ability to

satisfy specified requirements.  The “Implement Software Design” process is associated with an improved

                                                       
3 Here we use the term “SPA” in the general sense, not in the sense of the SEI specific assessment method (which was also called
a SPA).
4 In this paper we only refer to the PDTR version of the ISO/IEC 15504 document set since this was the one used during our
empirical study.  The PDTR version reflects one of the stages that a document has to go through on the path to international
standardization. The PDTR version is described in detail in (El Emam et al., 1998).
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ability to meet budget commitments, and the “Integrate and Test Software” process is associated with

improved productivity.

Performance Measure Process(es)

Small Organizations

Ability to meet budget commitments

Ability to meet schedule commitments Develop Software Design

Ability to achieve customer satisfaction

Ability to satisfy specified requirements

Staff productivity

Staff morale / job satisfaction

Large Organizations

Ability to meet budget commitments Develop Software Design

Implement Software Design

Ability to meet schedule commitments Develop Software Design

Ability to achieve customer satisfaction Develop Software Design

Ability to satisfy specified requirements Develop Software Design

Staff productivity Integrate and Test Software

Staff morale / job satisfaction Develop Software Design

Table 1: Summary of the findings from our predictive validity study. In the first column are the
performance measures that were collected for each project. In the second column are the development
processes whose capability was evaluated. The results are presented separately for small (equal to or

less than 50 IT staff) and large organizations (more than 50 IT staff).  For each performance measure we
show the software development processes that were found to be related to it.  For example, for large

organizations, we found that the “Develop Software Design” and “Implement Software Design” processes
were associated with the “Ability to meet budget commitments”.  Also, for instance, we did not find any

processes that were associated with “Staff productivity” in small organizations.  A process was considered
to be associated with a performance measure if it had a correlation coefficient that was greater than or

equal to 0.3, and that was statistically significant at a one-tailed (Bonferonni adjusted) alpha level of 0.1.

In the next section we provide the background to our study.  This is followed in Section 3 with an overview

of the ISO/IEC 15504 architecture and rating scheme that was used during our study.  Section 4 details

our research method, and Section 5 contains the results.  We conclude the paper in Section 6 with a

discussion of our results and directions for future research.
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2 Background
A recent survey of assessment sponsors found that baselining process capability and tracking process

improvement progress are two important reasons for conducting a SPA (El Emam and Goldenson, 2000).

Both of these reasons rely on the quantitative score obtained from an assessment, indicating that

sponsors perceive assessments as a measurement procedure.

As with any measurement procedure, its validity must be demonstrated before one has confidence in its

use.  The validity of measurement is defined as the extent to which a measurement procedure is

measuring what it is purporting to measure (Kerlinger, 1986).  During the process of validating a

measurement procedure one attempts to collect evidence to support the types of inferences that are to be

drawn from measurement scores.

A basic premise of SPAs is that the resultant quantitative scores are predictors of the performance of the

project and/or organization that is assessed.  Testing this premise can be considered as an evaluation of

the predictive validity of the assessment measurement procedure (El Emam and Goldenson, 1995).

In this section we review existing theoretical and empirical work on the measurement of development

process capability and the predictive validity of such measures.

2.1 Theoretical Model Specification
A predictive validity study typically tests the hypothesized model shown in Figure 1.  This shows that

there is a relationship between process capability and performance, and that this relationship is

dependent upon some context factors (i.e., the relationship functional form or direction may be different

for different contexts, or may exist only for some contexts).

The hypothesized model can be tested for different units of analysis (Goldenson et al., 1999).  The three

units of analysis are the life cycle process (e.g., the design process), the project (which could be a

composite of the capability of multiple life cycle processes of a single project, such as design and coding),

or the organization (which could be a composite of the capability of the same or multiple processes

across different projects).  All of the three variables in the model can be measured at any one of these

units of analysis.5

                                                       
5 Although, if process capability is measured on a different unit from the performance measure, then the results of a predictive
validity study may be more difficult to interpret.
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Figure 1: Theoretical model being tested in a predictive validity study of process capability.

The literature refers to measures at different units of analysis using different terminology. To remain

consistent, we will use the term “process capability”, and preface it with the unit of analysis where

applicable. For example, one can make a distinction between measuring process capability, as in

ISO/IEC 15504, and measuring organizational maturity, as in the SW-CMM (Paulk and Konrad, 1994).

Organizational maturity can be considered as a measure of organizational process capability.

2.2 Theoretical Basis for Validating Software Development Process
Capability
Three existing models explicitly hypothesize benefits as software development process capability is

improved.  These are reviewed below.

The SW-CMM defines 18 KPAs that are believed to represent good software engineering practices

(Software Engineering Institute, 1995).  The main design, construction, integration, and testing processes

are embodied in the Software Product Engineering KPA (Software Engineering Institute, 1998a). This is

defined at Level 3.

As organizations increase their organizational process capability by implementing progressively more of

these processes, it is hypothesized that three types of benefits will accrue (Paulk et al., 1993):

• the differences between targeted results and actual results will decrease across projects,

• the variability of actual results around targeted results decreases, and

• costs decrease, development time shortens, and productivity and quality increase.

However, these benefits are not posited only for the Software Product Engineering KPA, but rather as a

consequence of implementing combinations of practices.

The emerging ISO/IEC 15504 international standard, on the other hand, defines a set of processes, and a

scale that can be used to evaluate the capability of each process separately (El Emam et al., 1998)

(details of the ISO/IEC 15504 architecture are provided in Section 3).  The initial requirements for

ISO/IEC 15504 state that an organization’s assessment results should reflect its ability to achieve
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productivity and/or development cycle time goals (El Emam et al., 1998).  It is not clear however, whether

this is hypothesized for each individual process, or for combinations of processes.

The Software Engineering Institute has published a so-called Technology Reference Guide (Software

Engineering Institute, 1997), which is a collection and classification of software technologies. Its purpose

is to foster technology dissemination and transfer. Each technology is classified according to processes in

which it can be applied (application taxonomy) and according to qualities of software systems that can be

expected as a result from applying the technology (quality measures taxonomy). The classifications have

passed a comprehensive review by a large number of noted software engineering experts. This

accumulated expert opinion can be used as another source of claims on the impact of design,

implementation, integration and testing processes on overall project performance.

The technologies listed for the process categories related to design, implementation, integration and

testing can be mapped to quality measures such as correctness, reliability, maintainability,

understandability, and cost of ownership. Through such a mapping one can posit relationships between

the practices and the quality attributes.

Therefore, the existing literature does strongly suggest that there is a relationship between software

development process capability and performance.  However, the models differ in the expected benefits

that they contend will accrue from their implementation, and also the former two in their process capability

measurement schemes.

2.3 Evidence of the Predictive Validity of Development Process
Capability Measures
To our knowledge, no empirical evidence exists supporting the predictive validity of the software

development process capability measures as defined in ISO/IEC 15504.  The Technology Reference

Guide is based largely on expert judgement.  Nevertheless, there have been studies of predictive validity

based on the SW-CMM and other models. In the following we review these studies.

Two classes of empirical studies have been conducted and reported thus far: case studies and

correlational studies (Goldenson et al., 1999).  Case studies describe the experiences of a single

organization (or a small number of selected organizations) and the benefits it gained from increasing its

process capability.  Case studies are most useful for showing that there are organizations that have

benefited from increased process capability.  Examples of these are reported in (Humphrey et al., 1991;

Herbsleb et al., 1994; Dion, 1992; Dion, 1993; Wohlwend and Rosenbaum, 1993; Benno and Frailey,

1995; Lipke and Butler, 1992; Butler 1995; Lebsanft, 1996; Krasner, 1999).  However, in this context,

case studies have a methodological disadvantage that makes it difficult to generalize the results from a

single case study or even a small number of case studies.  Case studies tend to suffer from a selection

bias because:
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• Organizations that have not shown any process improvement or have even regressed will be

highly unlikely to publicize their results, so case studies tend to show mainly success stories (e.g.,

all the references to case studies above are success stories), and

• The majority of organizations do not collect objective process and product data (e.g., on defect

levels, or even keep accurate effort records). Only organizations that have made improvements

and reached a reasonable level of maturity will have the actual objective data to demonstrate

improvements (in productivity, quality, or return on investment). Therefore failures and non-

movers are less likely to be considered as viable case studies due to the lack of data.6

With correlational studies, one collects data from a larger number of organizations or projects and

investigates relationships between process capability and performance statistically. Correlational studies

are useful for showing whether a general association exists between increased capability and

performance, and under what conditions.

There have been a few correlational studies in the past that evaluated the predictive validity of various

process capability measures.  For example, Goldenson and Herbsleb (Goldenson and Herbsleb, 1995)

evaluated the relationship between SW-CMM capability scores and organizational performance

measures.  They surveyed individuals whose organizations have been assessed against the SW-CMM.

The authors evaluated the benefits of higher process capability using subjective measures of

performance.  Organizations with higher capability tend to perform better on the following dimensions

(respondents chose either the "excellent" or "good" response categories when asked to characterize their

organization’s performance on these dimensions): ability to meet schedule,  product quality, staff

productivity, customer satisfaction, and staff morale. The relationship with the ability to meet budget

commitments was not found to be statistically significant.

A more recent study considered the relationship between the implementation of the SW-CMM KPA’s and

delivered defects (after correcting for size and personnel capability) (Krishnan and Kellner, 1998).  They

found evidence that increasing process capability is negatively associated with delivered defects.

Another correlational study investigated the benefits of moving up the maturity levels of the SW-CMM

(Flowe and Thordahl, 1994; Lawlis et al., 1996)7.   They obtained data from historic U.S. Air Force

contracts. Two measures were considered: (a) cost performance index which evaluates deviations in

actual vs. planned project cost, and (b) schedule performance index which evaluates the extent to which

schedule has been over/under-run. Generally, the results show that higher maturity projects approach on-

target cost, and on-target schedule.

                                                       
6 Exceptions would be where contractual requirements mandate the collection and reporting of performance data, such as schedule
and cost performance.  This, for instance, occurs with DoD contracts.
7 This data set was reanalyzed by El Emam and Goldenson (El Emam and Goldenson, 2000) to address some methodological
questions. Although, the conclusions of the reanalysis are the same as the original authors’.
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McGarry et al. (McGarry et al., 1998) investigated the relationship between assessment scores using an

adaptation of the SW-CMM process capability measures and project performance for fifteen projects

within a single organization.  They did not find strong evidence of predictive validity, although all

relationships were in the expected direction.

Clark (Clark, 1997) investigated the relationship between satisfaction of SW-CMM goals and software

project effort, after correcting for other factors such as size and personnel experience. His results indicate

that the more KPAs are implemented, the less effort is consumed on projects.

Gopal et al. (Gopal et al., 1999) performed a study with two Indian software firms, collecting data on 34

application software projects.  They investigated the impact of process capability as measured by the

SW-CMM KPAs.  Specifically, they identified two dimensions of capability: Technical Processes

(consisting of Requirements Management, Software Product Engineering, Software Configuration

Management, and Software Product Planning) and Quality Processes (consisting of Training Program,

Peer Reviews, and Defect Prevention).  The Technical Processes dimension embodies the software

development processes that are of primary interest in our study. They found that the Quality Processes

were related to a reduction in rework and increases in overall effort, and the Technical Processes were

associated with a reduction in effort and increases in elapsed time.

Harter et al. (Harter et al., 1999) report on a comprehensive study to evaluate the impact of process

maturity as measured by the SW-CMM levels.  They found that higher maturity is associated with higher

product quality.  No direct effect of maturity on cycle time was found, but the net effect of process maturity

on cycle time was negative due to the improvements in product quality (i.e., higher maturity leads to

better quality which in turn leads to reduced cycle time due to less rework).  Also, the direct effect of

maturity on development effort was found to be positive. But the net effect of higher maturity on effort was

negative due to improvements in quality (i.e., higher maturity leads to higher quality which in turn leads to

reduced effort due to less rework).  In this particular study product quality was measured as the reciprocal

of defect density for defects found during system and acceptance testing.

Jones presents the results of an analysis on the benefits of moving up the 7-level maturity scale of

Software Productivity Research (SPR) Inc.'s proprietary model (Jones, 1999; Jones, 1996). This data

were collected from SPR's clients. His results indicate that as organizations move from Level 0 to Level 6

on the model they witness (compound totals): 350% increase in productivity, 90% reduction in defects,

70% reduction in schedules.

Deephouse et al. evaluated the relationship between individual processes and project performance

(Deephouse et al., 1995).  As would be expected, they found that evidence of predictive validity depends

on the particular performance measure that is considered.  One study by El Emam and Madhavji (El

Emam and Madhavji, 1995) evaluated the relationship between four dimensions of organizational process

capability and the success of the requirements engineering process.  Evidence of predictive validity was
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found for only one dimension.  However, neither of these studies used the ISO/IEC 15504 measure of

process capability.

As can be seen from the above review that despite there being studies with other capability measurement

schemes, no evidence exists that demonstrates the relationship between the capability of software

development processes as defined in ISO/IEC 15504 and the performance of software projects.  This

means that we cannot substantiate claims that improving the capability of the ISO/IEC 15504 software

development processes will lead to any improvement in project performance, and we cannot be specific

about which performance measures will be affected.  Hence, the rationale for the current study.

2.4 Moderating Effects
A recent review of the empirical literature on software process assessments noted that existing evidence

suggests that the extent to which a project’s or organization’s performance improves due to the

implementation of good software engineering practices (i.e., increasing process capability) is dependent

on the context (El Emam and Briand, 1999).  This highlights the need to consider the project and/or

organizational context in predictive validity studies. However, it has also been noted that the overall

evidence remains equivocal as to which context factors should be considered in predictive validity studies

(El Emam and Briand, 1999).

In our current study we consider the size of the organization as a context factor.  This is not claimed to be

the only context factor that ought to be considered, but is only one of the important ones that has been

mentioned repeatedly in the literature.

Previous studies provide inconsistent results about the effect of organizational size. For example, there

have been some concerns that the implementation of some of the practices in the CMM, such as a

separate Quality Assurance function and formal documentation of policies and procedures, would be too

costly for small organizations (Brodman and Johnson, 1994). Therefore, the implementation of certain

processes or process management practices may not be as cost-effective for small organizations as for

large ones.  However, a moderated analysis of the relationship between organizational capability and

requirements engineering process success (using the data set originally used in (El Emam and Madhavji,

1995)) found that organizational size does not affect predictive validity (El Emam and Briand, 1999).  This

result is consistent with that found in (Goldenson and Herbsleb, 1995) for organization size and

(Deephouse et al., 1995) for project size, but is at odds with the findings from (Brodman and Johnson,

1994).

To further confuse the issue, an earlier investigation (Lee and Kim, 1992) studied the relationship

between the extent to which software development processes are standardized and MIS success.8 It was

found that standardization of life cycle processes was associated with MIS success in smaller

organizations but not in large ones. This is in contrast to some of the findings cited above. In summary, it

                                                       
8 Process standardization is a recurring theme in process capability measures.
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is not clear if and how organization size moderates the benefits of process and the implementation of

process management practices.

We therefore explicitly consider organizational size as a factor in our study to identify if the predictive

validity results are different for different sized organizations.

3 Overview of the ISO/IEC PDTR 15504 Rating
Scheme
3.1 The Architecture
The architecture of ISO/IEC 15504 is two-dimensional as shown in Figure 2.  One dimension consists of

the processes that are actually assessed (the Process dimension) that are grouped into five categories.

The second dimension consists of the capability scale that is used to evaluate the process capability (the

Capability dimension).  The same capability scale is used across all processes.  Software development

processes are defined in the Engineering process category in the Process dimension.

During an assessment it is not necessary to assess all the process in the process dimension.  Indeed, an

organization can scope an assessment to cover only the subset of processes that are relevant for its

business objectives.  Therefore, not all organizations that conduct an assessment based on ISO/IEC

15504 will necessarily cover all of the development processes within their scope.
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Figure 2: An overview of the ISO/IEC 15504 two dimensional architecture.

In ISO/IEC 15504, there are 5 levels of capability that can be rated, from Level 1 to Level 5.  A Level 0 is

also defined, but this is not rated directly.  These 6 levels are shown in Table 2.  In Level 1, one attribute

is directly rated. There are 2 attributes in each of the remaining 4 levels.  The attributes are also shown in

Table 2, and explained in more detail in (El Emam et al., 1998).

The rating scheme consists of a 4-point achievement scale for each attribute. The four points are

designated as F, L, P, N for Fully Achieved, Largely Achieved, Partially Achieved, and Not Achieved.  A

summary of the definition for each of these response categories is given in Table 3.

It is not required that all the attributes in all five levels be rated during an assessment.  For example, it is

permissible that an assessment only rate attributes up to say level 3, and not rate at levels 4 and 5.

The unit of rating in an ISO/IEC PDTR 15504 process assessment is the process instance.  A process

instance is defined as a singular instantiation of a process that is uniquely identifiable and about which

information can be gathered in a repeatable manner (El Emam et al., 1998).
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ID Title

Level 0 Incomplete Process
There is general failure to attain the purpose of the process.  There are no easily identifiable work
products or outputs of the process.

Level 1 Performed Process
The purpose of the process is generally achieved.  The achievement may not be rigorously
planned and tracked.  Individuals within the organization recognize that an action should be
performed, and there is general agreement that this action is performed as and when required.
There are identifiable work products for the process, and these testify to the achievement of
the purpose.

1.1 Process performance attribute

Level 2 Managed Process
The process delivers work products of acceptable quality within defined timescales.  Performance
according to specified procedures is planned and tracked.  Work products conform to specified standards
and requirements.  The primary distinction from the Performed Level is that the performance of the
process is planned and managed and progressing towards a defined process.

2.1 Performance management attribute
2.2 Work product management attribute

Level 3 Established Process
The process is performed and managed using a defined process based upon good software engineering
principles.  Individual implementations of the process use approved, tailored versions of standard,
documented processes.  The resources necessary to establish the process definition are also in place.  The
primary distinction from the Managed Level is that the process of the Established Level is planned and
managed using a standard process.

3.1 Process definition attribute
3.2 Process resource attribute

Level 4 Predictable Process
The defined process is performed consistently in practice within defined control limits, to achieve its
goals.  Detailed measures of performance are collected and analyzed.  This leads to a quantitative
understanding of process capability and an improved ability to predict performance.  Performance is
objectively managed.  The quality of work products is quantitatively known.  The primary distinction
from the Established Level is that the defined process is quantitatively understood and controlled.

4.1 Process measurement attribute
4.2 Process control attribute

Level 5 Optimizing Process
Performance of the process is optimized to meet current and future business needs, and the process
achieves repeatability in meeting its defined business goals.  Quantitative process effectiveness and
efficiency goals (targets) for performance are established, based on the business goals of the
organization.  Continuous process monitoring against these goals is enabled by obtaining quantitative
feedback and improvement is achieved by analysis of the results.  Optimizing a process involves piloting
innovative ideas and technologies and changing non-effective processes to meet defined goals or
objectives.  The primary distinction from the Predictable Level is that the defined process and the
standard process undergo continuous refinement and improvement, based on a quantitative
understanding of the impact of changes to these processes.

5.1 Process change attribute
5.2 Continuous improvement attribute

Table 2: Overview of the capability levels and attributes.

The scope of an assessments is an Organizational Unit (OU) (El Emam et al., 1998).  An OU deploys one

or more processes that have a coherent process context and operates within a coherent set of business

goals. The characteristics that determine the coherent scope of activity - the process context - include the
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application domain, the size, the criticality, the complexity, and the quality characteristics of its products or

services.  An OU is typically part of a larger organization, although in a small organization the OU may be

the whole organization. An OU may be, for example, a specific project or set of (related) projects, a unit

within an organization focused on a specific life cycle phase (or phases), or a part of an organization

responsible for all aspects of a particular product or product set.

Rating & Designation Description

Not Achieved - N There is no evidence of achievement of the defined attribute.

Partially Achieved - P There is some achievement of the defined attribute.

Largely Achieved - L There is significant achievement of the defined attribute.

Fully Achieved - F There is full achievement of the defined attribute.

Table 3: The four-point attribute rating scale.

3.2 Measuring Software Development Process Capability
In ISO/IEC 15504, the software development process is embodied in three processes: Develop Software

Design, Implement Software Design, Integrate and Test Software.

One of the ISO/IEC 15504 documents contains an exemplar assessment model (known as Part 5).  This

provides further details of how to rate the development processes.  Almost all of the assessments that

were part of our study used Part 5 directly, and those that did not used models that are based on Part 5.

Therefore a discussion of the guidance for rating the software development processes in Part 5 is

relevant here.

For each process there are a number of base practices that can be used as indicators of performance

(attribute 1.1 in Table 2).  A base practice is a software engineering or project management activity that

addresses the purpose of a particular process.  Consistently performing the base practices associated

with a process will help in consistently achieving its purpose.  The base practices are described at an

abstract level, identifying "what" should be done without specifying "how".  The base practices

characterize performance of a process.  Implementing only the base practices of a process may be of

minimal value and represents only the first step in building process capability, but the base practices

represent the unique, functional activities of the process, even if that performance is not systematic. The

base practices are summarized below for each of our three processes.
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3.2.1 Develop Software Design

The purpose of the Develop software design process is to define a design for the software that

accommodates the requirements and can be tested against them. As a result of successful

implementation of the process:

• an architectural design will be developed that describes major software components which

accommodate the software requirements;

• internal and external interfaces of each software component will be defined;

• a detailed design will be developed that describes software units that can be built and tested;

• traceability will be established between software requirements and software designs.

Base practices that should exist to indicate that the purpose of the Develop Software Design process has

been achieved are:

Develop software architectural design.  Transform the software requirements into a software

architecture that describes the top-level structure and identifies its major components.

Design interfaces.  Develop and document a design for the external and internal interfaces.

Develop detailed design.  Transform the top level design into a detailed design for each

software component.  The software components are refined into lower levels containing software

units. The result of this base practice is a documented software design which describes the

position of each software unit in the software architecture.9

Establish Traceability.  Establish traceability between the software requirements and the

software designs.

3.2.2 Implement Software Design

The purpose of the Implement software design process is to produce executable software units and to

verify that they properly reflect the software design. As a result of successful implementation of the

process:

• verification criteria will be defined for all software units against software requirements;

• all software units defined by the design will be produced;

• verification of the software units against the design is accomplished.

Base practices that should exist to indicate that the purpose of the Implement Software Design process

has been achieved are:

                                                       
9 The detailed design includes the specification of interfaces between the software units.
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Develop software units.  Develop and document each software unit.10

Develop unit verification procedures.  Develop and document procedures for verifying that

each software unit satisfies its design requirements.11

Verify the software units.  Verify that each software unit satisfies its design requirements and

document the results.

3.2.3 Integrate and Test Software

The purpose of the Integrate and test software process is to integrate the software units with each other

producing software that will satisfy the software requirements. This process is accomplished step by step

by individuals or teams.  As a result of successful implementation of the process:

• an integration strategy will be developed for software units consistent with the release strategy;

• acceptance criteria for aggregates will be developed that verify compliance with the software

requirements allocated to the units;

• software aggregates will be verified using the defined acceptance criteria;

• integrated software will be verified using the defined acceptance criteria;

• test results will be recorded;

• a regression strategy will be developed for retesting aggregates or the integrated software should

a change in components be made.

Base practices that should exist to indicate that the purpose of the Integrate and Test Software process

has been achieved are:

Determine regression test strategy.  Determine the strategy for retesting aggregates should a

change in a given software unit be made.

Build aggregates of software units.  Identify aggregates of software units and a sequence or

partial ordering for testing them.12

Develop tests for aggregates.  Describe the tests to be run against each software aggregate,

indicating software requirements being checked, input data and acceptance criteria.

Test software aggregates.  Test each software aggregate against the acceptance  criteria, and

document the results.

                                                       
10 This base practice involves creating and documenting the final representations of each software unit.
11 The normal verification procedure will be through unit testing, and the verification procedure will include unit test cases and unit
test data.
12 Typically, the software architecture and the release strategy will have some influence on the selection of aggregates.
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Integrate software aggregates.  Integrate the aggregated software components to form a

complete system.

Develop tests for software.  Describe the tests to be run against the integrated software,

indicating software requirements being checked, input data, and acceptance criteria.  The set of

tests should demonstrate compliance with the software requirements and provide coverage of the

internal structure of the software.13

Test integrated software.  Test the integrated software against the acceptance criteria, and

document the results.

3.2.4 Rating Level 2 and 3 Attributes

For higher capability levels, a number of Management Practices have to be evaluated to determine the

attribute rating.  For each of the attributes in levels 2 and 3, the management practices are summarized

below.  We do not consider levels above 3 because we do not include higher level ratings within our

study.

3.2.4.1 Performance management attribute

This is defined as the extent to which the execution of the process is managed to produce work products

within stated time and resource requirements. In order to achieve this capability, a process needs to have

time and resources requirements stated and produce work products within the stated requirements. The

related Management Practices are:

Management practices
Identify resource requirements to enable planning and tracking of the process.
Plan the performance of the process by identifying the activities of the process and the
allocated resources according to the requirements.
Implement the defined activities to achieve the purpose of the process.
Manage the execution of the activities to produce the work products within stated time
and resource requirements.

3.2.4.2 Work product management attribute

This is defined as the extent to which the execution of the process is managed to produce work products

that are documented and controlled and that meet their functional and non-functional requirements, in line

with the work product quality goals of the process. In order to achieve this capability, a process needs to

have stated functional and non-functional requirements, including integrity, for work products and to

produce work products that fulfil the stated requirements. The related Management Practices are:

                                                       
13 Tests can be developed during processes Develop software design and Implement software design. Commencement of test
development should generally not wait until software integration.
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Management practices
Identify requirements for the integrity and quality of the work products.
Identify the activities needed to achieve the integrity and quality requirements for work
products.
Manage the configuration of work products to ensure their integrity.
Manage the quality of work products to ensure that the work products meet their
functional and non-functional requirements.

3.2.4.3 Process definition attribute

This is defined as the extent to which the execution of the process uses a process definition based upon

a standard process, that enables the process to contribute to the defined business goals of the

organization.  In order to achieve this capability, a process needs to be executed according to a standard

process definition that has been suitably tailored to the needs of the process instance. The standard

process needs to be capable of supporting the stated business goals of the organization. The related

Management Practices are:

Management practices
Identify the standard process definition from those available in the organization that is
appropriate to the process purpose and the business goals of the organization.
Tailor the standard process to obtain a defined process appropriated to the process
context.
Implement the defined process to achieve the process purpose consistently, and
repeatably, and support the defined business goal of the organization.
Provide feedback into the standard process from experience of using the defined process.

3.2.4.4 Process resource attribute

This is defined as the extent to which the execution of the process uses suitable skilled human resources

and process infrastructure effectively to contribute to the defined business goals of the organization. In

order to achieve this capability, a process needs to have adequate human resources and process

infrastructure available that fulfil stated needs to execute the defined process. The related Management

Practices are:

Management practices
Define the human resource competencies required to support the implementation of the
defined process.
Define process infrastructure requirements to support the implementation of the
defined process.
Provide adequate skilled human resources meeting the defined competencies.
Provide adequate process infrastructure according to the defined needs of the process.

3.3 Summary
In this section we have presented a summary of the two-dimensional ISO/IEC 15504 architecture.  An

important element of that architecture for our purposes is the process capability measurement scheme.
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This consists of 9 attributes that are each rated on a 4-point “achievement” scale.  We are only interested

in the first 5 of these (i.e., the first three levels) since these are the ones we use in our study.  We also

presented some details about the type of information that an assessor would typically look for when

making a rating on each of these five attributes.

4 Research Method
4.1 Approaches to Evaluating Predictive Validity in Correlational
Studies

Measuring the Criterion

Questionnaire Measurement
Program

Questionnaire Q1 Q2 (low cost)Measuring
Capability Assessment Q3 Q4 (high cost)

(across organizations) (within one organization)

Table 4: Different correlational approaches for evaluating predictive validity.

Correlational approaches to evaluating the predictive validity of a process capability measure can be

classified by the manner in which the variables are measured. Table 4 shows a classification of

approaches.  The columns indicate the manner in which the criterion (i.e., performance) is measured.

The rows indicate the manner in which the process capability is measured.  The criterion can be

measured using a questionnaire whereby data on the perceptions of experts are collected.  It can also be

measured through a measurement program.  For example, if our criterion is defect density of delivered

software products, then this could be measured through an established measurement program that

collects data on defects found in the field.  Process capability can also be measured through a

questionnaire whereby data on the perceptions of experts on the capability of their processes are

collected.  Alternatively, actual assessments can be performed, which are a more rigorous form of

measurement14.

A difficulty with studies that attempt to use criterion data that are collected through a measurement

program is that the majority of organizations do not collect objective process and product data (e.g., on

defect levels, or even keep accurate effort records). Primarily organizations that have made

improvements and reached a reasonable level of process capability will have the actual objective data to

demonstrate improvements (in productivity, quality, or return on investment).15 This assertion is supported

by the results in (Brodman and Johnson, 1995) where, in general, it was found that organizations at lower

SW-CMM maturity levels are less likely to collect quality data (such as the number of development

defects). Also, the same authors found that organizations tend to collect more data as their CMM maturity

                                                       
14 “More rigorous” is intended to mean with greater reliability and construct validity.
15 This is the same disadvantage of case studies as described in Section 2.3.
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levels rise. It was also reported in another survey (Rubin, 1993) that for 300 measurement programs

started since 1980, less than 75 were considered successful in 1990, indicating a high mortality rate for

measurement programs. This high mortality rate indicates that it may be difficult right now to find many

organizations that have implemented measurement programs.  This means that organizations or projects

with low process capability would have to be excluded from a correlational study.  Such an exclusion

would reduce the variation in the performance measure, and thus reduce (artificially) the validity

coefficients.  Therefore, correlational studies that utilize objective performance measures are inherently in

greater danger of not finding significant results.

Furthermore, when criterion data are collected through a measurement program, it is necessary to have

the criterion measured in the same way across all observations.  This usually dictates that the study is

done within a single organization where such measurement consistency can be enforced, hence reducing

the generalizability of the results.

Conducting a study where capability is measured through an assessment as opposed to a questionnaire

implies greater costs.  This usually translates into smaller sample sizes and hence reduced statistical

power.

Therefore, the selection of a quadrant in Table 4 is a tradeoff amongst cost, statistical power,

measurement rigor, and generalizability.

There are a number of previous studies that evaluated the relationship between process capability (or

organizational maturity) and the performance of projects that can be placed in quadrant Q1.  For

example, (Goldenson and Herbsleb, 1995; Deephouse et al., 1995; Clark, 1997; Gopal et al., 1999).

These studies have the advantage that they can be conducted across multiple projects and across

multiple organizations, and hence can produce more generalizable conclusions.

A more recent study evaluated the relationship between questionnaire responses on implementation of

the SW-CMM KPA’s and defect density (Krishnan and Kellner, 1998), and this would be placed in

quadrant Q2.  However, this study was conducted across multiple projects within a single organization,

reducing its generalizability compared with studies conducted across multiple organizations.

Our current study can be placed in quadrant Q3 since we use process capability measures from actual

assessments, and questionnaires for evaluating project performance.  This retains the advantage of

studies in quadrant Q1 since it is conducted across multiple projects in multiple organizations, but utilizes

a more rigorous measure of process capability.  Similarly, the study of Jones can be considered to be in

this quadrant (Jones, 1996; Jones, 1999). 16

                                                       
16 Since it is difficult to find low maturity organizations with objective data on effort and defect levels, and since there are few high
maturity organizations, Jones' data relies on the reconstruction of, at least, effort data from memory, as noted in (Jones, 1994):
"The SPR approach is to ask the project team to reconstruct the missing elements from memory."  The rationale for that is stated as
"the alternative is to have null data for many important topics, and that would be far worse."  The general approach is to show staff a
set of standard activities, and then ask them questions such as which ones they used and whether they put in any unpaid overtime
during the performance of these activities.  For defect levels, the general approach is to do a matching between companies that do
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Studies in quadrant Q4 are likely to have the same limitations as studies in quadrant Q2: being conducted

across multiple projects within the same organization.  For instance, the study of McGarry et al was

conducted within a single company (McGarry et al., 1998), the AFIT study was conducted with contractors

of the Air Force (Flowe and Thordahl, 1994; Lawlis et al., 1996), and the study by Harter et al. (Harter et

al., 1999) was performed on 30 software products created by the systems integration division within one

organization.

Therefore, the different types of studies that can be conducted in practice have different advantages and

disadvantages, and predictive validity studies have been conducted in the past that populate all four

quadrants.  It is reasonable then to encourage studies in all four quadrants.  Consistency in the results

across correlational studies that use the four approaches would increase the weight of evidence

supporting the predictive validity hypothesis.

4.2 Source of Data
The data that was used for this study was obtained from the SPICE Trials.  The SPICE Trials are an

international effort to empirically evaluate the emerging ISO/IEC 15504 international standard world wide.

The SPICE Trials have been divided into three broad phases to coincide with the stages that the ISO/IEC

15504 document was expected to go through on its path to international standardization.  The analyses

presented in this paper come from phase 2 of the SPICE Trials.  Phase 2 lasted from September 1996 to

June 1998.

During the trials, organizations contribute their assessment ratings data to an international trials database

located in Australia, and also fill up a series of questionnaires after each assessment. The questionnaires

collect information about the organization and about the assessment.  There is a network of 26 SPICE

Trials co-ordinators around the world who interact directly with the assessors and the organizations

conducting the assessments.  This interaction involves ensuring that assessors are qualified, making

questionnaires available, answering queries about the questionnaires, and following up to ensure the

timely collection of data.

                                                                                                                                                                                  
not measure their defects with similar companies that do measure, and then extrapolate for those that don't measure.  It should be
noted that SPR does have a large data base of project and organizational data, which makes this kind of matching defensible.
However, since at least some of the criterion measures are not collected from measurement programs, we place this study in the
same category as those that utilize questionnaires.
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Figure 4: Distribution of assessed OUs by region.

During Phase 2 of the SPICE Trials a total of 70 assessments had been conducted and contributed their

data to the international database. The distribution of assessments by region is given in Figure 3.17  In

total 691 process instances were assessed. Since more than one assessment may have occurred in a

particular OU (e.g., multiple assessments each one looking at a different set of processes), a total of 44

OUs were assessed.  Their distribution by region is given in Figure 4.

Given that an assessor can participate in more than one assessment, the number of assessors is smaller

than the total number of assessments. In total, 40 different lead assessors  took part.

The employment status of the assessors is summarized in Figure 5.  As can be seen, most assessors

consider themselves in management or senior technical positions in their organizations, with a sizeable

number of the rest being consultants.

                                                       
17 Within the SPICE Trials, assessments are coordinated within each of the five regions shown in the figures above.
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of box and whisker plots and how to interpret them is provided in Appendix B (Section 8).
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The variation in the number of years of software engineering experience and assessment experience of

the assessors is shown in Figure 6.  The median experience in software engineering is 12 years, with a

maximum of 30 years experience.  The median experience in assessments is 3 years, indicating a non-

trivial background in assessments.

The median number of assessments performed in the past by the assessors is 6, and the median number

of 15504-based assessments is 2.  This indicates that, in general, assessors had a good amount of

experience with software process assessments.

4.3 Unit of Analysis
The unit of analysis for this study is the software project.  This means that process capability ratings are

obtained for the relevant process in each project, and project performance measures are collected for the

same project.

4.4 Measurement
4.4.1 Measuring Process Capability

A previous study had identified that the capability scale of ISO/IEC 15504 is two dimensional (El Emam,

1998).18  The first dimension, which was termed “Process Implementation”, consists of the first three

levels.  The second dimension, which was termed “Quantitative Process Management”, consists of levels

4 and 5. It was also found that these two dimensions are congruent with the manner in which

assessments are conducted in practice: either only the “Process Implementation” dimension is rated or

both dimensions are rated (recall that it is not required to rate at all five levels in an ISO/IEC 15504

assessment).

In our data set, 33% of the Develop Software Design processes, 31% of the Implement Software Design

processes, and 44% of the Integrate and Test Software processes were not rated on the “Quantitative

Process Management” dimension.  If we exclude all processes with this rating missing then we lose a

substantial proportion of our observations.  Therefore, we limit ourselves in the current study to the first

dimension only.

To construct a single measure of “Process Implementation” we code an ‘F’ rating as 4, down to a 1 for an

‘N’ rating.  Subsequently, we construct an unweighted sum of the attributes at the first three levels of the

capability scale.  This is a common approach for the construction of summated rating scales (McIver and

Carmines, 1981).  The range of this summated scale is 4 to 20.

                                                       
18 A similar study was performed by Curtis (Curtis, 1996) to identify the underlying dimensions of the SW-CMM practices, and a
number of different dimensions were identified.  El Emam and Goldenson (El Emam and Goldenson, 2000) reanalyzed the data in
(Clark, 1997) also to identify the underlying dimensions in the SW-CMM. Gopal et al.  also identified two dimensions of a subset of
the SW-CMM KPAs (Gopal et al., 1999). Therefore, current literature does clearly signify that process capability is indeed a
multidimensional construct.
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4.4.2 Measuring Project Performance

The performance measures were collected through a questionnaire. The respondent to the questionnaire

was the sponsor of the assessment, who should be knowledgeable about the projects that were

assessed.  In cases where the sponsor was not able to respond, s/he delegated the task to a project

manager or senior technical person who completed the questionnaire.

To maintain comparability with previous studies, we define project performance in a similar manner.  In

the Goldenson and Herbsleb study (Goldenson and Herbsleb, 1995) performance was defined in terms of

six variables: customer satisfaction, ability to meet budget commitments, ability to meet schedule

commitments, product quality, staff productivity, and staff morale / job satisfaction.  We use these six

variables, except that product quality is generalized to “ability to satisfy specified requirements”. We

therefore define project performance in terms of the six variables summarized in Table 5.  Deephouse et

al. (Deephouse et al., 1995) consider software quality (defined as match between system capabilities and

user requirements, ease of use, and extent of rework), and meeting targets (defined as within budget and

on schedule). One can argue that if “ease of use” is not in the requirements then it ought not be a

performance criterion, therefore we can consider it as being a component of satisfying specified

requirements.  Extent of rework can also be considered as a component of productivity since one would

expect productivity to decrease with an increase in rework.  Therefore, these performance measures are

congruent with our performance measures, and it is clear that they represent important performance

criteria for software projects.

Definition Variable Name

Ability to meet budget commitments BUDGET

Ability to meet schedule commitments SCHEDULE

Ability to achieve customer satisfaction CUSTOMER

Ability to satisfy specified requirements REQUIREMENTS

Staff productivity PRODUCTIVITY

Staff morale / job satisfaction MORALE

Table 5:  The criterion variables that were studied.  These were evaluated for every project.  The
question was worded as follows: “How would you judge the process performance on the following
characteristics … ”.  The response categories were: “Excellent”, “Good”, “Fair”, “Poor”, and “Don’t

Know”.

The responses were coded such that the “Excellent” response category is 4, down to the “Poor” response

category which was coded 1.  The “Don’t Know” responses were treated as missing values.19  The

implication of this coding scheme is that all investigated relationships are hypothesized to be positive.

                                                       
19 It is not uncommon to treat “Don’t Know” (DK) responses as missing values when there is no intrinsic interest in the fact that a DK
response has been provided (Rubin et al., 1995).
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4.5 Data Analysis
4.5.1 Evaluating the Relationships

A common coefficient for the evaluation of predictive validity in general is the correlation coefficient

(Nunnally and Bernstein, 1994).  It has also been used in the context of evaluating the predictive validity

of project and organizational process capability measures (McGarry et al, 1998; El Emam and Madhavji,

1995).  We therefore use this coefficient in our study to indicate the magnitude of a relationship.

We follow a two staged analysis procedure.  During the first stage we determine whether the association

between “Process Implementation” of the development processes and each of the performance

measures is “clinically significant” (using the Pearson correlation coefficient).  This means that it has a

magnitude that is sufficiently large.  If it does, then we test the statistical significance of the association.

The logic of this is explained below.

It is known that with a sufficiently large sample size even very small associations can be statistically

significant.  Therefore, it is also of import to consider the magnitude of a relationship to determine whether

it is meaningfully large. Cohen has provided some general guidelines for interpreting the magnitude of the

correlation coefficient (Cohen, 1988).  We consider “medium” sized (i.e., r =0.3) correlations as the

minimal magnitude that is worthy of consideration.  The logic behind this choice is that of elimination.  If

we take “small” association (i.e., r = 0.1) as the minimal worthy of consideration we may be being too

liberal and giving credit to weak associations that are not congruent with the broad claims made for the

predictive validity of assessment scores.  Using a “large” association (i.e., r = 0.5) as the minimal value

worthy of consideration may place a too high expectation on the predictive validity of assessment scores;

recall that many other factors are expected to influence the success of a software project apart from the

capability of the development processes.

In the social sciences predictive validity studies with one predictor rarely demonstrate correlation

coefficients exceeding 0.3 to 0.4 (Nunnally and Bernstein, 1994).  The rationale is that “people are far too

complex to permit a highly accurate estimate of their proficiency in most performance-related situations

from any practicable collection of test materials” (Nunnally and Bernstein, 1994).  Therefore, we would

expect that such guidelines would be at least equally applicable to studies of projects and organizations.

For statistical significance testing, we perform an ordinary least squares regression:

CAPaaPERF 10 +=

where PERF  is the performance measure according to Table 5 and CAP  is the “Process

Implementation” dimension of process capability.  We test whether the 1a  regression coefficient is

different from zero.  If there is sufficient evidence that it is, then we claim that CAP  is associated with

PERF .  The above model is constructed separately for each of the performance measures.  All tests

performed were one-tailed since our hypotheses are directional.
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4.5.2 Scale Type Assumption

According to some authors, one of the assumptions of the OLS regression model is that all the variables

should be measured at least on an interval scale (Bohrnstedt and Carter, 1971). This assumption is

based on the mapping originally developed by Stevens (Stevens, 1951) between scale types and

"permissible" statistical procedures. In our context, this raises two questions. First, what are the levels of

our measurement scales? Second, to what extent can the violation of this assumption have an impact on

our results?

The scaling model that is used in the measurement of the process capability construct is the summative

model (McIver and Carmines, 1981).  This consists of a number of subjective measures each on a 4-point

scale that are summed up to produce an overall measure of the construct.  Some authors state that

summative scaling produces interval level measurement scales (McIver and Carmines, 1981), while

others argue that this leads to ordinal level scales (Galletta and Lederer, 1989). In general, however, our

process capability is expected to occupy the grey region between ordinal and interval level measurement.

Our criterion measures utilized a single item each.  In practice, single item measures are treated as if they

are interval in many instances.  For example, in the construction and empirical evaluation of the User

Information Satisfaction instrument, inter-item correlations and principal components analysis are

commonly performed (Ives et al., 1983).

It is also useful to note a study by Spector (Spector, 1980) that indicated that whether scales used have

equal or unequal intervals does not actually make a practical difference. In particular, the mean of

responses from using scales of the two types do not exhibit significant differences, and that the test-retest

reliabilities (i.e., consistency of questionnaire responses when administered twice over a period of time) of

both types of scales are both high and very similar. He contends, however, that scales with unequal

intervals are more difficult to use, but that respondents conceptually adjust for this.

Given the proscriptive nature of Stevens' mapping, the permissible statistics for scales that do not reach

an interval level are distribution-free (or nonparametric) methods (as opposed to parametric methods, of

which OLS regression is one) (Siegel and Castellan, 1988). Such a broad proscription is viewed by

Nunnally as being "narrow" and would exclude much useful research (Nunnally and Bernstein, 1994).

Furthermore, studies that investigated the effect of data transformations on the conclusions drawn from

parametric methods (e.g., F ratios and t tests) found little evidence supporting the proscriptive viewpoint

(Labovitz, 1970; Labovitz, 1967; Baker et al., 1966). Suffice it to say that the issue of the validity of the

above proscription is, at best, debatable. As noted by many authors, including Stevens himself, the basic

point is that of pragmatism: useful research can still be conducted even if, strictly speaking, the

proscriptions are violated (Stevens, 1951; Bohrnstedt and Carter, 1971; Gardner, 1975; Velleman and

Wilkinson, 1993). A detailed discussion of this point and the literature that supports our argument is given

in (Briand et al., 1996).
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4.5.3 Multiple Hypothesis Testing

Since we are performing multiple hypotheses testing (i.e., a regression model for each of the six

performance measures), it is plausible that many 1a  regression coefficients will be found to be

statistically significant since the more null hypothesis tests that one performs, the greater the probability

of finding statistically significant results by chance.  We therefore use a Bonferonni adjusted alpha level

when performing significance testing (Rice, 1995).  We set our overall alpha level to be 0.1.

4.5.4 Organization Size Context

It was noted earlier that the relationships may be of different magnitudes for small vs. large organizations.

We therefore perform the analysis separately for small and large organizations.  Our definition of size is

the number of IT staff within the OU.  We dichotomize this IT staff size into SMALL and LARGE

organizations, whereby small is equal to or less than 50 IT staff.  This is the same definition of small

organizations that has been used in a European Commission project that is providing process

improvement guidance for small organizations (The SPIRE Project, 1998).

4.5.5 Reliability of Measures

It is known that lack of reliability in measurement can attenuate bivariate relationships (Nunnally and

Bernstein, 1994).  It is therefore important to evaluate the reliability of our subjective measures, and if

applicable, make corrections to the correlation coefficient that take into account reliability.

In another related scientific discipline, namely Management Information Systems (MIS), researchers tend

to report the Cronbach alpha reliability coefficient (Cronbach, 1951) most frequently (Subramanian and

Nilakanta, 1994). Also, it is considered by some researchers to be the most important reliability estimation

approach (Sethi and King, 1991).  This coefficient evaluates a certain type of reliability called internal

consistency, and has been used in the past to evaluate the reliability of the ISO/IEC 15504 capability

scale (El Emam, 1998; Fusaro et al., 1997).  We also calculate the Cronbach alpha coefficient for the

development process capability measures.

The Cronbach alpha coefficient varies between 0 and 1, where 1 is perfect reliability. Nunnally and

Bernstein (Nunnally and Bernstein, 1994) recommend that a coefficient value of 0.8 is a minimal

threshold for applied research settings, and a minimal threshold of 0.7 for basic research settings.

In our study we do not incorporate corrections for attenuation due to less than perfect reliability on the

process capability measure, however. As suggested in (Nunnally, 1978), it is preferable to use the

unattenuated correlation coefficient since this reflects the predictive validity of the process capability

measure that will be used in actual practice (i.e., in practice it will have less than perfect reliability).

4.5.6 Multiple Imputation

In the performance measures that we used (see Table 5) there were some missing values.  Missing

values are due to respondents not providing an answer on all or some of the performance questions, or

they selected the “Don’t Know” response category.  Ignoring the missing values and only analyzing the
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completed data subset can provide misleading results (Little and Rubin, 1987).  We therefore employ the

method of multiple imputation to fill in the missing values repeatedly (Rubin, 1987).  Multiple imputation is

a preferred approach to handling missing data problems in that it provides for proper estimates of

parameters and their standard errors.

The basic idea of multiple imputation is that one generates a vector of size M  for each value that is

missing.  Therefore an Mnmis ×  matrix is constructed, where misn  is the number of missing values.

Each column of this matrix is used to construct a complete data set, hence one ends up with M
complete data sets.  Each of these data sets can be analyzed using complete-data analysis methods.

The M  analyses are then combined into one final result.  Typically a value for M  of 3 is used, and this

provides for valid inference (Rubin and Schenker, 1991).  Although, to err on the conservative side, some

studies have utilized an M  of 5 (Treiman et al., 1988), which is the value that we use.

For our analysis the two parameters of interest are the correlation coefficient, r , and the 1a  parameter of

the regression model (we shall refer to this estimated parameter as Q̂ ).  Furthermore, we are interested

in the standard error of Q̂ , which we shall denote as U , in order to test the null hypothesis that it is

equal to zero.  After calculating these values for each of the 5 data sets, they can be combined to give an

overall r  value, r , an overall value for Q̂ , Q , and its standard error T .  Procedures for performing

this computation are detailed in (Rubin, 1987), and summarized in (Rubin and Schenker, 1991). In

Section 7 we describe the multiple imputation approach in general, its rationale, and how we

operationalized it for our specific study.

4.6 Summary
In this section we presented the details of how data was collected, how measures were defined, and how

the data was analyzed.  In brief, the data was collected from phase 2 of the SPICE Trials.  During the

trials the process capability measures were obtained from 70 actual assessments.  Six performance

measures were defined, and data on the performance of each project were collected from the sponsor

(or their designate) using a questionnaire during the assessment.  We analyze the data separately for

small and large organizations.  Our analysis method consists of constructing an ordinary least squares

regression model for each performance variable.  We first determine whether the correlation is

meaningfully large, and if it is, we test the statistical significance of the slope of the relationship between

capability and performance.
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5 Results
5.1 Description of Projects and Assessments
In this section we present some descriptive statistics on the projects that were assessed, and on the

assessments themselves. In the SPICE Phase 2 trials, a total of 44 organizations participated. Their

primary business sector distribution is summarized in Figure 7. As can be seen, the most frequently

occurring categories are Defence, IT Products and Services, and Software Development organizations.
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Figure 7: Business sector of all organizations that took part in SPICE Trials Phase 2 assessments
(n=44).

Since it is not necessary that an assessment include all development processes within its scope, it is

possible that the number of assessments that cover a particular development process is less than the

total number of assessments, and it is also possible that a different number of OUs assess each of the

development processes.  Furthermore, since it is possible that an assessment’s scope covers more than

one project, the number of projects is not necessarily equal to the number of OUs assessed. Table 6
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shows the number of OUs that assessed each of the development processes, the number of projects that

were actually assessed, and the number of projects in small versus large OUs.

Number of OUs Number of

Projects

Number of

Projects in Small

OUs

Number of

Projects in Large

OUs

Develop Software

Design

25 45 18 27

Implement

Software Design

18 32 18 14

Integrate and

Test Software

25 36 18 18

Table 6: Number of OUs and projects that assessed each of the three software development processes,
and their breakdown into small vs. large organizations.

5.1.1 Develop Software Design

Figure 8 shows the primary business sector distributions for those 25 organizations that assessed the

Develop Software Design process.  The most frequently occurring categories are similar to those for all

organizations that participated in the trials.  However, three categories disappeared altogether as well:

Public Utilities, Health and Pharmaceutical, and Manufacturing.
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Figure 8: Business sector of all OUs that assessed the Develop Software Design process.

Of the 25 OUs, they were distributed by country as follows:  Australia (12), Canada (1), Italy (2), France

(2), Turkey (1), South Africa (4), Germany (1), and Japan (2). Of these 9 were not ISO 9001 registered,

and 16 were ISO 9001 registered.

Figure 9 shows the variation in the number of projects that were assessed in each OU. The median value

is one project per OU, although in one case an OU assessed the Develop Software Design process in six

different projects.
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Figure 9: Box and whisker plot showing the variation in the number of projects that assessed their
Develop Software Design process in each OU. A description of box and whisker plots and how to

interpret them is provided in Appendix B (Section 8).
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Figure 10: Box and whisker plot showing the variation in the peak staff load for projects that assessed
the Develop Software Design process. A description of box and whisker plots and how to interpret them is

provided in Appendix B (Section 8).
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The distribution of peak staff load for the projects that assessed the Develop Software Design process is

shown in Figure 10. The median value is 13, with a minimum of two and a maximum of 80 staff.

Therefore, there is nonnegligible variation in terms of project staffing.
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Figure 11: Box and whisker plot showing the variation in the measures of the two dimensions of Develop
Software Design process capability. The first dimension, denoted D1, is “Process Implementation” and

consists of levels 1 to 3. The second dimension, denoted D2, is “Quantitative Process Management” and
consists of levels 4 and 5. The D2 measure used the same coding scheme as for the D1 measure, except
that it consists of only 4 attributes.  For the second dimension it is assumed that processes that were not
rated would receive a rating of N (Not Achieved) if they would have been rated.  This was done to ensure

that the sample size for both dimensions was the same. Note that it is common practice not to rate the
higher levels if there is strong a priori belief that the ratings will be N. A description of box and whisker

plots and how to interpret them is provided in Appendix B (Section 8).

In Figure 11 we can see the variation in the two measures of process capability. For the second

dimension, D2 (Quantitative Process Management), there is little variation. The median of D2 is 4, which

is the minimal value, indicating that at least 50% of projects do not implement any quantitative process

management practices for their Develop Software Design process. On the first dimension, D1 (Process

Implementation), there is substantially more variation with a median value of 14.
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Figure 12: Box and whisker plot showing the variation in the “Process Implementation” capability
dimension of the Develop Software Design process for the different OU sizes that were considered in our
study (in terms of IT staff). A description of box and whisker plots and how to interpret them is provided in

Appendix B (Section 8).

Figure 12 shows the variation along the D1 dimension for the two OU sizes that were considered during

our study.  Larger OUs tend to have greater implementation of Develop Software Design processes,

although the difference is not marked.

5.1.2 Implement Software Design

Figure 13 shows the primary business sector distribution for those 18 organizations that assessed the

Implement Software Design process.  In this particular subset, the “Software Development” category

dropped in occurrence compared with the overall trials participants. Moreover, three categories

disappeared altogether: Finance, Banking & Insurance, Public Utilities, and Health and Pharmaceutical.
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Figure 13: Business sector of all OUs that assessed the Implement Software Design process.

Of the 18 OUs, they were distributed by country as follows:  Australia (5), Canada (1), Italy (2), Spain (1),

Luxemburg (1), South Africa (4), France (1), Germany (1), Japan (2). Of these 8 were not ISO 9001

registered, and 10 were ISO 9001 registered.

Figure 14 shows the variation in the number of projects that were assessed in each OU. The median

value is one project per OU, although in one case an OU assessed the Implement Software Design

process in six different projects.
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Figure 14: Box and whisker plot showing the variation in the number of projects that assessed their
Implement Software Design process in each OU. A description of box and whisker plots and how to

interpret them is provided in Appendix B (Section 8).
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Figure 15: Box and whisker plot showing the variation in the peak staff load for projects that assessed
the Implement Software Design process. A description of box and whisker plots and how to interpret them

is provided in Appendix B (Section 8).
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The distribution of peak staff load for the projects that assessed the Implement Software Design process

is shown in Figure 15. The median value is 14.5, with a minimum of two and a non-outlier maximum of 80

staff. Although, one project had a peak load of 200 staff. Therefore, there is nonnegligible variation in

terms of project staffing.
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Figure 16: Box and whisker plot showing the variation in the measures of the two dimensions of
Implement Software Design process capability. The first dimension, denoted D1, is “Process

Implementation” and consists of levels 1 to 3. The second dimension, denoted D2, is “Quantitative
Process Management” and consists of levels 4 and 5. The D2 measure used the same coding scheme as
for the D1 measure, except that it consists of only 4 attributes.  For the second dimension it is assumed
that processes that were not rated would receive a rating of N (Not Achieved) if they would have been
rated.  This was done to ensure that the sample size for both dimensions was the same. Note that it is
common practice not to rate the higher levels if there is strong a priori belief that the ratings will be N. A
description of box and whisker plots and how to interpret them is provided in Appendix B (Section 8).

In Figure 16 we can see the variation in the two measures of process capability. For D2 (Quantitative

Process Management) there is little variation. The median of D2 is 4, which is the minimal value,

indicating that at least 50% of projects do not implement any quantitative process management practices

for their Implement Software Design process. On D1 there is substantially more variation with a median

value of 15.
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Figure 17: Box and whisker plot showing the variation in the “Process Implementation” capability
dimension of the Implement Software Design process for the different OU sizes that were considered in

our study (in terms of IT staff). A description of box and whisker plots and how to interpret them is
provided in Appendix B (Section 8).

Figure 17 shows the variation along the D1 dimension for the two OU sizes that were considered during

our study.  Larger OUs tend to have greater implementation of Implement Software Design processes,

and in this case the differences would seem to be marked.

5.1.3 Integrate and Test Software

Figure 18 shows the primary business sector distribution for those 25 organizations that assessed the

Integrate and Test Software process.  The most frequently occurring categories are the same as those for

the whole of the trials. However, two categories disappeared altogether: Aerospace and Health and

Pharmaceutical.
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Figure 18: Business sector of all OUs that assessed the Integrate and Test Software process.

Of the 25 OUs, they were distributed by country as follows:  Australia (10), Canada (1), Italy (1), France

(2), Spain (3), Turkey (1), South Africa (4), Germany (1), Japan (2). Of these 12 were not ISO 9001

registered, and 13 were ISO 9001 registered.

Figure 19 shows the variation in the number of projects that were assessed in each OU. The median

value is one project per OU, although in one case an OU assessed the Integrate and Test Software

process in four different projects.
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Figure 19: Box and whisker plot showing the variation in the number of projects that assessed their
Integrate and Test Software process in each OU. A description of box and whisker plots and how to

interpret them is provided in Appendix B (Section 8).
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Figure 20: Box and whisker plot showing the variation in the peak staff load for projects that assessed
the Integrate and Test Software process. A description of box and whisker plots and how to interpret them

is provided in Appendix B (Section 8).

The distribution of peak staff load for the projects that assessed the Integrate and Test Software process

is shown in Figure 20. The median value is 14, with the smallest being a one person project and a non-

outlier maximum of 30 staff. Although, one project had a peak load of 80 staff. It will be noted that the

projects that assessed this process tend to be slightly smaller than the projects that assessed the other

two development processes.
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Figure 21: Box and whisker plot showing the variation in the measures of the two dimensions of Integrate
and Test Software process capability. The first dimension, denoted D1, is “Process Implementation” and
consists of levels 1 to 3. The second dimension, denoted D2, is “Quantitative Process Management” and

consists of levels 4 and 5.  The D2 measure used the same coding scheme as for the D1 measure,
except that it consists of only 4 attributes. For the second dimension it is assumed that processes that

were not rated would receive a rating of N (Not Achieved) if they would have been rated.  This was done
to ensure that the sample size for both dimensions was the same. Note that it is common practice not to
rate the higher levels if there is strong a priori belief that the ratings will be N. A description of box and

whisker plots and how to interpret them is provided in Appendix B (Section 8).

In Figure 21 we can see the variation in the two measures of process capability. For D2 (Quantitative

Process Management) there is little variation. The median of D2 is 4, which is the minimal value,

indicating that at least 50% of projects do not implement any quantitative process management practices

for their Integrate and Test Software process. On D1 there is substantially more variation with a median

value of 13.
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Figure 22: Box and whisker plot showing the variation in the “Process Implementation” capability
dimension of the Integrate and Test Software process for the different OU sizes that were considered in

our study (in terms of IT staff). A description of box and whisker plots and how to interpret them is
provided in Appendix B (Section 8).

Figure 22 shows the variation along the D1 dimension for the two OU sizes that were considered during

our study.  Larger OUs tend to have slightly less implementation of Integrate and Test Software

processes, although the difference is not marked.

5.1.4 Summary

To summarize the description of projects and assessments, we note the following:

• No organizations in the “Software Development” business sector assessed the Implement

Software Design process when compared with all trials participants.

• For the Develop Software Design and Integrate and Test Software processes, the most

frequently occurring types of organizations compared to the trials overall were the same.

• Organizations in the “Health and Pharmaceutical” business sector never assessed any of the

development processes, even though some participated in the trials.

• For all three development processes, the median number of projects assessed per

organization is one.

• In general, the larger projects tended to assess the Implement Software Design process

more often.
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• There was consistently little variation in the second dimension of process capability

(Quantitative Process Management) for the three processes that were assessed, and at least

50% of assessed projects had no capability on that dimension.

• The capability on the Process Implementation dimension of process capability tended to be

highest for the Implement Software Design process, and lowest for the Integrate and Test

Software process.

• The differences in the Process Implementation dimension between large and small

organizations tended not to be marked for the Develop Software Design and the Integrate

and Test Software processes, but larger organizations tended to have higher capability on

the Implement Software Design process.

• Variation in the Process Implementation dimension tended to be markedly smaller for larger

organizations on the Implement Software Design and the Integrate and Test Software

processes.

5.2 Reliability of the Software Development Process Capability
Measures
The Cronbach alpha reliability coefficients for the “Process Implementation” variable are as shown in

Table 7.  For the purposes of our study, these values can be considered sufficiently large (see the

interpretation guidelines in Section 4.5.5).

Process Cronbach alpha

Develop Software Design 0.86

Implement Software Design 0.88

Integrate and Test Software 0.87

Table 7: Results of reliability evaluation for the process capability measure for the three development
processes.

5.3 Affects of Software Development Process Capability
Below we provide the results for small organizations and large organizations for each of the three

development processes.  The results tables show the 1a  coefficient and its standard error for each

imputed complete data set.  The combined results include the average correlation coefficient across the

complete data sets ( r ), and the average 1a  coefficient (Q ) and its multiply imputed standard error T .

Values of r  that are bolded indicate that it is larger than our 0.3 threshold.  Values of Q  that are bolded

indicates that they are statistically significant at the Bonferonni adjusted alpha level.
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5.3.1 Develop Software Design

Table 7 shows the results for small organizations.  Here we see that the correlation between the Develop

Software Design process and SCHEDULE variable is larger than our threshold, and the regression

parameter is statistically significant.  This indicates that higher capability increases the predictability of the

project schedule and hence the ability of the project to meet their schedule commitments. However, no

relationship was found with the BUDGET variable ( 0625.0=r ), nor any of the remaining performance

measures.  This can be interpreted as an indicant that small organizations may be putting extra resources

(budget) to meet their schedule commitments. The lack of other relationships may be due to a weak

relationship between the Process Implementation dimension of process capability and the other

performance measures in small organizations, perhaps due to a lack of applicability of the capability

measure to small organizations.

Table 8 shows the results for larger organizations.  Here we find strong relationships for all performance

measures, and all except PRODUCTIVITY are statistically significant.  The exception can be interpreted

as a reflection of the fact that process capability does not necessarily imply a “good” design, only that the

design process is implemented and managed.  A design that has flaws may lead to rework and hence to

reduced productivity.  Another explanation is that the design process does not commonly consume a

large proportion of a project’s effort.  Hence, even if efficiencies were realized during the process, they

may not have a substantial impact on overall project productivity.
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T
BUDGET -0.0134 0.0501 0.0235 0.0466 0.0605 0.0488 0.0050 0.0487 -0.0135 0.0501 0.0625 0.0124 0.0595

SCHEDULE 0.0831 0.0508 0.0646 0.0545 0.1200 0.0450 0.0831 0.0508 0.1570 0.0449 0.4507 0.1016 0.0638

CUSTOMER -0.0097 0.0401 0.0161 0.0346 0.0088 0.0374 -0.0023 0.0374 0.0161 0.0346 0.0430 0.0058 0.0390

REQUIREMENTS 0.0659 0.0408 0.0160 0.0291 0.0344 0.0271 0.0160 0.0291 0.0215 0.0344 0.2206 0.0307 0.0398

PRODUCTIVITY 0.0115 0.0187 -0.007 0.0224 0.0115 0.0187 -0.007 0.0224 -0.007 0.0224 0.0139 0.0004 0.0237

MORALE 0.0093 0.0320 0.0278 0.0329 0.0093 0.0378 0.0278 0.0329 0.0093 0.0320 0.1240 0.0167 0.0354

Table 8: Repeated imputation results and combined results for small organizations: Develop Software

Design process.  The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q .  Section 7.8
describes how values can be combined across imputed data sets. A bolded r  value indicates that it is

larger than our threshold of 0.3.  A bolded Q  value indicates that the slope difference from zero is
statistically significant.  The results indicate that the correlation between process capability for this

process and meeting schedule targets is meaningfully large and statistically significant.  This means that
projects in small organizations that have a larger “Process Implementation” value on the Develop

Software Design process tend to be better able to meet their schedule targets.
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T
BUDGET 0.0782 0.0280 0.0990 0.0252 0.0676 0.0292 0.0617 0.0298 0.0812 0.0277 0.4827 0.0775 0.0321

SCHEDULE 0.1551 0.0332 0.1551 0.0332 0.1551 0.0332 0.1551 0.0332 0.1551 0.0332 0.6822 0.1551 0.0332

CUSTOMER 0.1139 0.0314 0.0898 0.0321 0.0657 0.0316 0.0792 0.0319 0.0838 0.0328 0.4718 0.0865 0.0374

REQUIREMENTS 0.1201 0.0409 0.0964 0.0375 0.1056 0.0396 0.1294 0.0427 0.1653 0.0369 0.5239 0.1234 0.0492

PRODUCTIVITY 0.0660 0.0444 0.0736 0.0457 0.0660 0.0444 0.0766 0.0455 0.0977 0.0470 0.3157 0.0760 0.0476

MORALE 0.1693 0.0492 0.1488 0.0492 0.1591 0.0493 0.1841 0.0470 0.1515 0.0514 0.5503 0.1626 0.0517

Table 9: Repeated imputation results and combined results for large organizations: Develop Software

Design process. The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q . Section 7.8 describes
how values can be combined across imputed data sets. A bolded r  value indicates that it is larger than

our threshold of 0.3.  A bolded Q  value indicates that the slope difference from zero is statistically
significant.  The results indicate that projects in large organizations tend to have improved performance
on their ability to meet budget and target commitments, ability to achieve customer satisfaction, ability to

satisfy specified requirements, and improve staff morale and job satisfaction as they increase the
“Process Implementation” capability of their Develop Software Design process.  This evidence is actually

quite strong given that the r  values are relatively large, and that the slope parameter is statistically
significant despite the conservative analysis approach we used (see Section 5.4 for a further discussion

of this conservatism).

5.3.2 Implement Software Design

Table 10 shows the results for small organizations.  All correlations were below our threshold of 0.3, and

hence no relationships with project performance were identified.

Table 11 shows the results for large organizations. Here, all correlations except with PRODUCTIVITY are

large according to our criterion.  However, only the relationship with BUDGET is statistically significant.

The lack of statistical significance may also be influenced by the small sample size in this particular sub-

group (with only 14 projects).
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T
BUDGET -0.0165 0.0550 -0.0511 0.0536 -0.0142 0.0524 -0.0315 0.0545 -0.0165 0.0550 -0.1183 -0.0259 0.0568

SCHEDULE -0.0113 0.0612 0.0430 0.0586 0.0430 0.0586 0.0234 0.0606 0.0430 0.0586 0.1182 0.0282 0.0649

CUSTOMER -0.0632 0.0357 -0.0196 0.0365 -0.0294 0.0316 -0.0459 0.0350 -0.0129 0.0345 -0.2338 -0.0342 0.0413

REQUIREMENTS -0.0259 0.0316 -0.0357 0.0312 -0.0357 0.0312 -0.0184 0.0320 -0.0357 0.0312 -0.2331 -0.0302 0.0326

PRODUCTIVITY -0.0144 0.0389 -0.0083 0.0368 0.0127 0.0402 0.0052 0.0403 0.0127 0.0402 0.0082 0.0016 0.0416

MORALE 0.0077 0.0422 -0.0096 0.0408 -0.0465 0.0443 -0.0096 0.0408 0.0077 0.0422 -0.056 -0.0101 0.0485

Table 10: Repeated imputation results and combined results for small organizations: Implement Software

Design process. The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q . Section 7.8 describes
how values can be combined across imputed data sets.  No evidence was found for a relationship

between the “Process Implementation” capability on the Implement Software Design process and any of
the six performance measures.
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T

BUDGET 0.1467 0.0245 0.1467 0.0245 0.1467 0.0245 0.1535 0.0215 0.1535 0.0215 0.8793 0.1495 0.0237

SCHEDULE 0.1006 0.0579 0.0870 0.0505 0.0734 0.0384 0.0870 0.0505 0.0870 0.0505 0.4534 0.0870 0.0511

CUSTOMER 0.0666 0.0464 0.0529 0.0574 0.0597 0.0525 0.0666 0.0464 0.0597 0.0525 0.3293 0.0611 0.0516

REQUIREMENTS 0.0734 0.0384 0.0734 0.0384 0.0870 0.0505 0.0870 0.0505 0.0734 0.0384 0.4679 0.0788 0.0444

PRODUCTIVITY 0.0287 0.0558 0.0219 0.045 0.0219 0.0459 0.0355 0.0563 0.0355 0.0563 0.1558 0.0287 0.0528

MORALE 0.1293 0.0614 0.1293 0.0614 0.1225 0.0576 0.1293 0.0614 0.1293 0.0614 0.5201 0.1280 0.0608

Table 11: Repeated imputation results and combined results for large organizations: Implement Software

Design process. The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q . Section 7.8 describes
how values can be combined across imputed data sets.  A bolded r  value indicates that it is larger than

our threshold of 0.3.  A bolded Q  value indicates that the slope difference from zero is statistically
significant.  The results indicate that there is a “clinically significant” relationship between the “Process
Implementation” capability of the Implement Software Design process and five of the six performance

measures, but only the relationship with the ability to meet budget commitments is statistically significant.

5.3.3 Integrate and Test Software

Table 12 shows the results for small organizations. No relationships were found between process

capability and any of the performance measures.

Table 13 shows the results for large organizations. Only the relationship with the PRODUCTIVITY

variable was large and statistically significant, indicating that improvements in the capability of the

Integrate and Test Software process can increase productivity.  Intuitively this makes sense as integration

and testing can commonly consume large proportions of a project’s overall resources.  Therefore any

improvements in its efficiency can lead to substantial improvements in productivity.
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T
BUDGET -0.0218 0.0495 -0.0008 0.0468 0.0389 0.0501 -0.0218 0.0495 -0.0008 0.0468 -0.0075 -0.0013 0.0556

SCHEDULE -0.0092 0.0565 -0.0034 0.0546 0.0483 0.0602 0.0213 0.0563 0.0025 0.0558 0.0492 0.0119 0.0622

CUSTOMER 0.0025 0.0291 -0.0034 0.0330 -0.0069 0.0325 0.0025 0.0291 0.0025 0.0291 -0.0027 -0.0005 0.0310

REQUIREMENTS 0.0049 0.0284 -0.0104 0.0288 -0.0040 0.0434 0.0049 0.0284 -0.0040 0.0434 -0.0101 -0.0017 0.036

PRODUCTIVITY -0.0188 0.0238 -0.0035 0.0217 -0.0282 0.0266 -0.0188 0.0238 -0.0188 0.0238 -0.1758 -0.0176 0.0259

MORALE -0.0297 0.0342 -0.0146 0.0348 -0.0205 0.0363 -0.0205 0.0363 -0.0483 0.0369 -0.1813 -0.0267 0.0386

Table 12: Repeated imputation results and combined results for small organizations: Integrate and Test

Software process. The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q . Section 7.8 describes
how values can be combined across imputed data sets. No evidence was found for a relationship

between the “Process Implementation” capability on the Integrate and Test Software process and any of
the six performance measures.
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Results from Repeated Imputations

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Combined
Results

1̂Q 1U 2̂Q 2U 3̂Q 3U 4̂Q 4U 5̂Q 5U r Q T
BUDGET -0.0228 0.0503 0.0743 0.0520 0.0569 0.0573 0.0457 0.0572 0.0847 0.0551 0.2039 0.0477 0.0715

SCHEDULE -0.0538 0.0453 -0.0391 0.0511 -0.0592 0.0404 -0.0058 0.0466 0.0085 0.0516 -0.1612 -0.0299 0.0574

CUSTOMER -0.0379 0.0494 -0.0611 0.0526 0.0255 0.0623 0.0012 0.0552 0.0232 0.0587 -0.0524 -0.0098 0.0699

REQUIREMENTS 0.0402 0.0587 0.0128 0.0561 -0.0410 0.0599 0.0348 0.0514 0.0782 0.0591 0.1076 0.025 0.0746

PRODUCTIVITY 0.1374 0.0486 0.1401 0.0528 0.0557 0.0457 0.1548 0.0498 0.1060 0.0490 0.5020 0.1188 0.0655

MORALE -0.0062 0.0388 -0.0491 0.0374 -0.0375 0.0431 -0.0638 0.0399 -0.0151 0.0477 -0.2030 -0.0344 0.0490

Table 13: Repeated imputation results and combined results for large organizations: Integrate and Test

Software process. The iQ̂  values are the estimated slope parameters of the regression model for the ith

imputed data set.  The iU  values are the standard errors of the estimated slope parameter for the ith

imputed data set.  The combined results consist of the r  value, which is the mean correlation coefficient
across the five imputed data sets, the Q  value, which is the combined slope parameter across the five

imputed data sets, and the T  value, which is the combined standard error of Q . Section 7.8 describes
how values can be combined across imputed data sets.  A bolded r  value indicates that it is larger than

our threshold of 0.3.  A bolded Q  value indicates that the slope difference from zero is statistically
significant.  The results indicate that there is a relationship between the “Process Implementation”

capability of the Integrate and Test process and productivity.

5.3.4 Summary and Discussion

An overall summary of the results from this study is provided in Table 14.  This table shows in a succinct

manner which processes were found to be associated with each of the performance measures for small

and large organizations.  Due to the conservatism that is noted below, we also include in that summary

processes that had an association with performance measures whose magnitude was greater than 0.3,

but that was not statistically significant.

A number conclusions can be drawn:

• We found weak evidence supporting the verisimilitude of the predictive validity premise for small

organizations. This may be an indicatent that the process capability measure is not appropriate

for small organizations, or that the capabilities stipulated in ISO/IEC 15504 do not necessarily

improve project performance in small organizations.

• The productivity of projects in large organizations is associated with the capability of the

integration and testing process. Such a relationship makes intuitive sense since this process

commonly consumes large proportions of project effort.
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• The association of the Develop and Implement Software Design processes and the remaining

performance measures in large organizations have relatively large magnitudes, although

statistical significance is only attained for the Develop Software Design process.  For the

Implement Software Design process the sample size within that subset may have been too small

(hence, low statistical power).

• Given these results, we can confidently remark that the Develop Software Design process is a

key one for large organizations, and its assessment and improvement can provide substantial

payoff.

5.4 Limitations
Two potential limitations of our results concern their conservatism and generalizability.

Our results can be considered conservative due to the Bonferroni procedure that we employ for statistical

significance testing.  Another factor leading to conservatism is that our performance measures used

single item scales.  Single item scales are typically less reliable than multiple item scales.  Nunnally

(Nunnally, 1978) notes that a correction for attenuation in the correlation coefficient that considers the

observed reliability of the performance variables will estimate the “real validity” of the predictor.  In our

study, we could not estimate the reliability of our criterion. Therefore our predictive validity coefficients are

likely smaller than they would be with multi-item performance measures with a correction for attenuation.

This conservatism means that when we identify a meaningfully large (“clinically significant”) and

statistically significant result then the evidence is quite substantial since a significant result is found

despite the conservatism.  However, it also means that subsequent studies (say with larger sample sizes

and more reliable criterion measures) may find more of the processes related to performance.

There may also be limitations on the generalizability of our results. Specifically, the extent to which our

findings can be generalized to assessments that are not based on the emerging ISO/IEC 15504

International Standard. The emerging ISO/IEC 15504 International Standard defines requirements on

assessments.  Assessments that satisfy the requirements are claimed to be compliant.  Based on public

statements that have been made thus far, it is expected that some of the more popular assessment

models and methods will be consistent with the emerging ISO/IEC 15504 International Standard. For

example, Bootstrap version 3.0 claims compliance with ISO/IEC 15504 (Bicego et al., 1998), and the

future CMMI product suite is expected to be consistent and compatible (Software Engineering Institute,

1998b).  The assessments from which we obtained our data are also considered to be compliant.  The

extent to which our results, obtained from a subset of compliant assessments, can be generalized to all

compliant assessments is an empirical question and can be investigated through replications of our study.

The logic of replications leading to generalizable results is presented in (Lindsay and Ehrenberg, 1993).
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Performance Measure Process(es)

Small Organizations

Ability to meet budget commitments

Ability to meet schedule commitments Develop Software Design

Ability to achieve customer satisfaction

Ability to satisfy specified requirements

Staff productivity

Staff morale / job satisfaction

Large Organizations

Ability to meet budget commitments Develop Software Design

Implement Software Design

Ability to meet schedule commitments Develop Software Design

Implement Software Design

Ability to achieve customer satisfaction Develop Software Design

Implement Software Design

Ability to satisfy specified requirements Develop Software Design

Implement Software Design

Staff productivity Integrate and Test Software

Develop Software Design

Staff morale / job satisfaction Develop Software Design

Implement Software Design

Table 14: Summary of the findings from our predictive validity study. In the first column are the
performance measures that were collected for each project. In the second column are the development
processes whose capability was evaluated. The results are presented separately for small (equal to or

less than 50 IT staff) and large organizations (more than 50 IT staff).  For each performance measure we
show the software development processes that were found to be related to it. A process was considered
to be associated with a performance measure if it had a correlation coefficient that was greater than or
equal to 0.3 (i.e., “clinically significant”), and that was statistically significant at a one-tailed (Bonferonni

adjusted) alpha level of 0.1.  These processes are shown in bold.  The processes that are not bolded are
only “clinically significant” but not statistically significant.  The lack of statistical significance may be a

consequence of small sample size.

6 Conclusions
In this paper we have presented an empirical study that evaluated the predictive validity of the ISO/IEC

15504 measures of software development process capability (i.e., Develop Software Design, Implement

Software Design, and Integrate and Test Software).  Predictive validity is a basic premise of all software
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process assessments that produce quantitative results. We first demonstrated that no previous studies

have evaluated the predictive validity of these processes using the ISO/IEC 15504 measure, and then

described our study in detail. Our results indicate that higher development process capability is related

with increased project performance for large organizations. In particular, we found that the “Develop

Software Design” process capability to be associated with five different project performance measures,

indicating its importance as a target for process improvement.  The “Integrate and Test Software” process

capability was also found to be associated with productivity. However, the evidence of predictive validity

for small organizations was rather weak.

The results suggest that improving the design and integration and testing processes may potentially lead

to improvements in the performance of software projects in large organizations.  It is by no means

claimed that development process capability is the only factor that is associated with performance. Only

that some relatively strong associations have been found during our study, suggesting that these

processes ought to be considered as potential targets for assessment and improvement.

It is important to emphasize that studies such as this ought to be replicated to provide further confirmatory

evidence as to the predictive validity of ISO/IEC 15504 development process capability.  It is known in

scientific pursuits that there exists a "file drawer problem" (Rosenthal, 1991). This problem occurs when

there is a reluctance by journal editors to publish, and hence a reluctance by researchers to submit,

research results that do not show statistically significant relationships.  One can even claim that with the

large vested interests in the software process assessment community, reports that do not demonstrate

the efficacy of a particular approach or model may be buried and not submitted for publication.

Therefore, published works are considered to be a biased sample of the predictive validity studies that

are actually conducted. However, by combining the results from a large number of replications that show

significant relationships, one can assess the number of studies showing no significant relationships that

would have to be published before our overall conclusion of there being a significant relationship is put

into doubt (Rosenthal, 1991). This assessment would allow the community to place realistic confidence

(or otherwise) in the results of published predictive validity studies.

7 Appendix A: Multiple Imputation Method
In this appendix we describe the approach that we used for imputing missing values on the performance

variable, and also how we operationalize it in our specific study. It should be noted that, to our knowledge,

multiple imputation techniques have not been employed thus far in software engineering empirical

research, where the common practice has been to ignore observations with missing values.

7.1 Notation
We first present some notation to facilitate explaining the imputation method.  Let the raw data matrix

have i  rows (indexing the cases) and j  columns (indexing the variables), where ni K1=  and
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qj K1= .  Some of the cells in this matrix may be unobserved (i.e., missing values).  We assume that

there is only one outcome variable of interest for imputation (this is also the context of our study since we

deal with each dependent variable separately), and let iy  denote its value for the i th case.  Let

),( obsmis YYY = , where misY  denotes the missing values and obsY  denotes the observed values on that

variable.  Furthermore, let X  be a scaler or vector of covariates that are fully observed for every i .

These may be background variables, which in our case were the size of an organization in IT staff and

whether the organization was ISO 9001 registered, and other covariates that are related to the outcome

variable, which in our case was the process capability measure (i.e., “process implementation” as defined

in the main body of the text).

Let the parameter of interest in the study be denoted by Q .  We assume that Q  is scaler since this is

congruent with our context.  For example, let Q  be a regression coefficient.  We wish to estimate Q
)

 with

associated variance U  from our sample.

7.2 Ignorable Models
Models underlying the method of imputation can be classified as assuming that the reasons for the

missing data are either ignorable or nonignorable.  Rubin (Rubin, 1987) defines this formally.  However,

here it will suffice to convey the concepts, following (Rubin, 1988).

Ignorable reasons for the missing data imply that a nonrespondent is only randomly different from a

respondent with the same value of X .  Nonignorable reasons for missing data imply that, even though

respondents and nonrespondents have the same value of X , there will be a systematic difference in

their values of Y .  An example of a nonignorable response mechanism in the context of process

assessments that use a model such as that of ISO/IEC 15504 is when organizations assess a particular

process because it is perceived to be weak and important for their business.  In such a case, processes

for which there are capability ratings are likely to have lower capability than other processes that are not

assessed.

In general, most imputation methods assume ignorable nonresponse (Schaefer, 1997) (although, it is

possible to perform, for example, multiple imputation, with a nonignorable nonresponse mechanism).  In

the analysis presented in this paper there is no a priori reason to suspect that respondents and

nonrespondents will differ systematically in the values of the outcome variable, and therefore we assume

ignorable nonresponse.

7.3 Overall Multiple Imputation Process
The overall multiple imputation process is shown in Figure 23.  Each of these tasks is described below.  It

should be noted that the description of these tasks is done from a Bayesian perspective.
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Modeling
Choose model for the data

Estimation
Calculate posterior distribution of
chosen model parameters - pos( )ϑ

Multiple Imputation:
For k=1 to M

Imputation
Draw from the posterior distribution pos(ϑ)

and create a Y vector of values to impute

Analysis
Analyse each of the M complete data

sets using complete-data methods

Combination
Combine the M analyses into one

set of analysis results

Figure 23: Schematic showing the tasks involved in multiple imputation.

7.4 Modelling Task

The objective of the modelling task is to specify a model ( )XYiiXY XYf θ,  using the observed data only

where XYθ  are the model parameters. For example, consider the situation where we define an ordinary

least squares regression model that is constructed using the observed values of Y  and the predictor

variables are the covariates X , then ),( 2σβθ =XY  are the vector of the regression parameters and

the variance of the error term respectively. This model is used to impute the missing values. In our case

we used an implicit model that is based on the hot-deck method. This is described further below.
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7.5 Estimation Task

We define the posterior distribution of θ  as ( )obsYX ,Pr θ .20  However, the only function of θ  that is

needed for the imputation task is XYθ .  Therefore, during the estimation task, we draw repeated values

of XYθ  from its posterior distribution ( )obsXY YX ,Pr θ .  Let’s call a drawn value *
XYθ .

7.6 Imputation Task
The posterior predictive distribution of the missing data given the observed data is defined by the

following result:

( ) ( ) ( )∫= θθθ dYXYXYYXY obsobsmisobsmis ,Pr,,Pr,Pr
Eqn.  1

We therefore draw a value of misY  from its conditional posterior distribution given *
XYθ .  For example, we

can draw ),(
2*** σβθ =XY  and compute the missing iy  from ( )*, XYii xyf θ . This is the value that is

imputed.  This process is repeated M  times.

7.7 Analysis Task
For each of the M  complete data sets, we can calculate the value of Q .  This provides us with the

complete-data posterior distribution of Q : ( )misobs YYXQ ,,Pr .

7.8 Combination Task
The basic result provided by Rubin (Rubin, 1987) is:

( ) ( ) ( )∫= misobsmismisobsobs dYYXYYYXQYXQ ,Pr,,Pr,Pr
Eqn.  2

This result states that the actual posterior distribution of Q  is equal to the average over the repeated imputations.
Based on this result, a number of inferential procedures are defined.

The repeated imputation estimate of Q  is:

∑=
M
Q

Q m

)
Eqn.  3

which is the mean value across the M  analyses that are performed.

The variability associated with this estimate has two components.  First there is the within-imputation

variance:

                                                       

20 We use the notation ( )⋅Pr  to denote a probability density.
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∑=
M
U

U m Eqn.  4

and second the between imputation variance:

( )
1

2

−
−

= ∑
M

QQ
B m

)
Eqn.  5

The total variability associated with Q  is therefore:

( )BMUT 11 −++=
Eqn.  6

In the case where Q  is scaler, the following approximation can be made:

( )
vt

T
QQ

~
−

Eqn.  7

where vt  is a t distribution with v  degrees of freedom where:

( )( )2111 −+−= rMv Eqn.  8

and

( )
U

BM
r

11 −+= Eqn.  9

If one wants to test the null hypothesis that 0:0 =QH  then the following value can be referred to a t

distribution with v  degrees of freedom:

T
Q

Eqn.  10

7.9 Hot-Deck Imputation: Overview
We will first start by presenting the hot-deck imputation procedure in general, then show the particular

form of the procedure that we use in our analysis, and how this is incorporated into the multiple

imputation process presented above.

Hot-deck procedures are used to impute missing values. They are a duplication approach whereby a

recipient with a missing value receives a value from a donor with an observed value (Ford, 1983).

Therefore the donor’s value is duplicated for each recipient.  As can be imagined, this procedure can be

operationalized in a number of different ways.

A basic approach for operationalizing this is to sample from the obsn  observed values and use these to

impute the misn  missing values (Little and Rubin, 1987), where obsmis nnn += .  A simple sampling
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scheme could follow a multinomial model with sample size misn  and probabilities 



obsobs nn

1,,1 K .  It

is more common, however, to use the X  covariates to perform a poststratification.  In such a case, the

covariates are used to construct C  disjoint classes of observations such that the observations within

each class are as homogeneous as possible.  This also has the advantage of further reducing

nonresponse bias.

For example, if X  consists of two binary vectors, then we have 4 possible disjoint classes.  Within each

class there will be some observations with Y  observed and some with Y  missing.  For each of the

missing values, we can randomly select an observed Y  value and use it for imputation.  This may result

in the same observation serving as a donor more than once (Sande, 1983).  Here it is assumed that

within each class the respondents follow the same distribution as the nonrespondents.

7.10 Metric-Matching Hot-Deck
It is not necessary that the X  covariates are categorical.  They can be continuous or a mixture of

continuous and categorical variables.  In such a case a distance function is defined, and the l  nearest

observations with the Y  value observed serve as the donor pool (Sande, 1983).

An allied area where such metric-matching has received attention is the construction of matched samples

in observational studies (Rosenbaum and Rubin, 1985).  This is particularly relevant to our case because

we cannot ensure in general that all the covariates that will be used in all analyses will be categorical.

For the sake of brevity, we will only focus on the particular metric-matching technique that we employ.

7.11 Response Propensity Matching
In many observational studies21 (see (Cochran, 1983)) a relatively small group of subjects is exposed to a

treatment, and there exists a larger group of unexposed subjects.  Matching is then performed to identify

unexposed subjects who serve as a control group.  This is done to ensure that the treatment and control

groups are both similar on background variables measured on all subjects.

Let the variable iR  denote whether a subject i  was exposed ( 1=iR ) or unexposed ( 0=iR ) to the

treatment.  Define the propensity score, ( )Xe  as the conditional probability of exposure given the

covariates (i.e., ( ) ( )XRXe 1Pr ==  ).  Rosenbaum and Rubin (Rosenbaum and Rubin, 1983) prove

some properties of the propensity score that are relevant for us.

First, they show that the distribution of X  is the same for all exposed and unexposed subjects within

strata with constant values of ( )Xe .  Exact matching will therefore tend to balance the X  distributions

                                                       
21 These are studies where there is not a random assignment of subjects to treatments.  For example, in the case of studying the
relationship between exposure to cigarette smoke and cancer, it is not possible to deliberately expose some subjects to smoke.
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for both groups.  Furthermore, they also show that the distribution of the outcome variable Y  is the same

for exposed and unexposed subjects with the same value of ( )Xe   (or within strata of constant ( )Xe ).

David et al. (David et al., 1983) adopt these results to the context of dealing with nonresponse in surveys.

We can extrapolate and let 1=iR  indicate that there was a response on Y  for observation i , and that

0=iR  indicates nonresponse.  Hence we are dealing with response propensity as opposed to exposure

propensity.  We shall denote response propensity with ( )Xp .  It then follows that under ignorable

nonresponse if we can define strata with constant ( )Xp  then the distribution of X  and Y  are the same

for both respondents and nonrespondents within each stratum.

To operationalize this, we need to address two issues.  First, we need to estimate ( )Xp .  Second, it is

unlikely that we would be able to define sufficiently large strata where ( )Xp  is constant, and therefore

we need to approximate this.

If we take the response indicator R  to be a Bernoulli random variable independently distributed across

observations, then we can define a logistic regression model (Hosmer and Lemeshow, 1989):
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This will provide us with an estimate of response propensity for respondents and nonrespondents.

We can then group the estimated response propensity into C  intervals, with bounding values

1,,,,,0 121 −Cppp K .  Strata can then be formed with observation i  in stratum c  if cic ppp <<− 1  with

Cc K1= .  Therefore, we have constructed strata with approximately constant values of response

propensity.  In our application we set 5=C , dividing the estimated response propensity score using

quintiles.

7.12 An Improper Hot-Deck Imputation Method
Now that we have constructed homogeneous strata, we can operationalize the metric-matching hot-deck

imputation procedure by sampling with equal probability from the respondents within each stratum, and

use the drawn values to impute the nonrespondent values in the same stratum.  However, doing so we do

not draw θ  from its posterior distribution, and then draw misY  from its posterior conditional distribution

given the drawn value of θ .  Such a procedure would be improper because it does not take into account

the uncertainty introduced by the imputation itself. Therefore some alternatives are considered, namely

the approximate Bayesian bootstrap.
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7.13 The Approximate Bayesian Bootstrap
A proper imputation approach that has been proposed is the Approximate Bayesian Bootstrap – ABB –

(Rubin and Schenker, 1986; Rubin and Schenker, 1991).  This is an approximation of the Bayesian

Bootstrap (Rubin, 1981) that is easier to implement.  The procedure for the ABB is, for each stratum, to

draw with replacement obsz  Y  values, where obsz  is the number of observed Y  values in the stratum.

Then, draw from that misz  Y  values with replacement, where misz  is the number of observations with

missing values in the stratum.  The latter draws are then used to impute the missing values within the

stratum.  The drawing of misz  missing values from a possible sample of obsz  values rather than from the

actual observed values generates the appropriate between-imputation variability.  This is repeated M
times to generate multiple imputations.

7.14 Summary
The procedure that we have described implements multiple-imputation through the hot-deck method.  It

consists of constructing a response propensity model followed by an Approximate Bayesian Bootstrap.

This procedure is general and can be applied to impute missing values that are continuous or categorical.

We have described it here in the context of univariate Y , but it is generally applicable to multivariate Y

(see (Rubin, 1987) for a detailed discussion of multiple-imputation for multivariate Y ).

8 Appendix B: Understanding Box and Whisker Plots
In this paper, box and whisker plots are used quite frequently.  This brief appendix is intended to explain

how to interpret such a diagram.

IQR

1.5*IQR

1.5*IQR

0
0

0
0

3*IQR

3*IQR

*
*

*
*

Outliers

Outliers

Extreme
values

Extreme
values

Non-outlier
range

Figure 24:  Description of a box and whisker plot.

Box and whisker plots are used to show the variation in a particular variable.  Figure 24 shows how such

a plot is constructed.  The box represents the inter-quartile range (IQR).  The IQR bounds the 25th and

75th percentiles.  The 25th percentile is the value of the variable where 25% or less of the observations
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have equal or smaller values.  The same is for the 75th percentile.  The whiskers are the largest values

within 1.5 times the size of the box.  This value of 1.5 is conventional.  Outliers are within 1.5 times the

size of the box beyond the whiskers, and extremes are beyond the outliers.  Finally, usually there is a dot

in the box.  This dot would be the median, or the 50th percentile.

The box and whisker plot provides a rather versatile way for visualizing the obtained values on a variable.
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