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Abstract
One of the recently proposed tools for controlling software inspections is capture-recapture models.

These are models that can be used to estimate the number of remaining defects in a software document

after an inspection. Based on this information one can decide whether to reinspect a document to ensure

that it is below a prespecified defect density threshold, and that the inspection process itself has attained

a minimal level of effectiveness. This line of work has also recently been extended with other techniques,

such as the Detection Profile Method. In this paper we investigate an alternative approach: the use of

subjective estimates of effectiveness by the inspectors for making the reinspection decision. We

performed a study with 30 professional software engineers and found that the median relative error of the

engineers’ subjective estimates of defect content to be zero, and that the reinspection decision based on

that estimate is consistently more correct than the default decision of never reinspecting. This means that

subjective estimates provide a good basis for ensuring product quality and inspection process

effectiveness during software inspections. Since a subjective estimation procedure can be easily

integrated into existing inspection processes, it represents a good starting point for practitioners before

introducing more objective decision making criteria by means of capture-recapture models or the Defect

Detection Profile Method.

1 Introduction
In the recent past, there has been a mushrooming of research activity in developing and improving defect

content estimation techniques (DCETs) for software inspections. All of these techniques use quantitative

models for estimating the number of defects in a software document from data collected after a software

inspection has been carried out. The logic behind applying DCETs is that by estimating the number of

defects in a document, the remaining defects can be calculated, and subsequently an objective decision

can be made on whether to reinspect the software document or to let it pass to the next phase. In this
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manner, the document quality (defined in terms of defect density) and the inspection process quality

(defined in terms of its effectiveness) can be controlled. Objectivity refers to the fact that the decision

making process does not depend on human judgment.

Two classes of DCETs have been studied: capture-recapture (CR) models and the Detection Profile

Method (DPM). CR models originate from wildlife research. These models have been applied in biology to

the estimation of the size of animal populations, and epidemiology to estimate the size of diseased

populations and birth and death rates. The same models can be applied in the context of a software

inspection to estimate the number of defects in a software document.

The DPM (Wohlin and Runeson, 1998) involves fitting a curve to the data obtained from an inspection,

and using that for predicting the total number of defects in a document. Further investigations have

resulted in improvements to DPM and the proposal of a procedure for selection between CR and DPM

(Briand et al., 1998a).

Because the major focus of this line of work was the development of objective decision criteria, another,

much simpler approach has not been investigated in this context thus far: the use of subjective estimates

of inspection effectiveness for making the reinspection decision. The basic concept behind this approach

is to ask inspectors after an inspection to estimate the percentage of defects in a document they believe

they have actually found. Using this information, one can estimate the total number of defects in a

document and the remaining number of defects. In addition to its simplicity, this approach would be

appealing for practitioners because, first, it requires only one inspector, perhaps the most experienced

one, to make the estimate, and therefore would be applicable irrespective of the total number of

inspectors. And second, it neither requires significant changes to an existing inspection implementation,

such as collecting more detailed data on defects, nor any extra effort for inspection participants.

The motivation for investigating subjective estimates of effectiveness comes from the earlier work of

Selby (Selby, 1985). In a study comparing code reading, functional testing, and structural testing, he

noted that readers could estimate quite accurately their own effectiveness: "This estimation of the number

of faults uncovered correlated reasonably well with the actual percentage of faults detected (R = .57,

alpha < .0001). Investigating further, individuals using the different techniques were able to give better

estimates: code readers gave the best estimates (R =.79, alpha < .0001).... This last observation

suggests that the code readers were more certain of the effectiveness they had in revealing faults in the

programs." Although subjective, if further corroborative evidence suggests that those effectiveness

estimates are accurate, then this can provide another approach for controlling software inspections and a

good starting point for practitioners before introducing more objective DCETs, such as CR and DPM.

In this paper we show how subjective estimates of effectiveness can be applied to making the

reinspection decision for code documents, and report on a study that empirically evaluated the usefulness

                                                                                                                                                                                  
1 This work was partially done while El Emam was at the Fraunhofer Institute for Experimental Software Engineering, Germany.
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of the estimates. The study was conducted with 30 professional software engineers at Bosch Telecom

GmbH, Germany. The reading technique that the subjects used for defect detection was checklist-based

reading (CBR) (Laitenberger et al., 1999). The reason for focusing on CBR is that in a recent literature

survey checklist-based reading was found to be the de-facto standard approach for defect detection in

many industrial inspection implementations (Laitenberger and DeBaud, 1998). After the defect detection

step, the subjects estimated their own effectiveness, i.e., the percentage of defects they thought they

have found. The subjective estimates were used in our analysis. Briefly, our results indicate that

estimates of defect content based on subjective estimates of effectiveness have a median relative error of

zero, and that they provide consistently better document and inspection process quality control than the

current default practice of not reinspecting a document.

This paper is organized as follows. In Section 2 we present an overview of empirical work on evaluating

DCETs in software engineering, and current uses of subjective estimates in software engineering.

Section 3 describes how subjective estimates of effectiveness can be evaluated.  Our research method is

described in detail in Section 4, and our results in Section 5.  We conclude the paper in Section 6 with a

summary and suggestions for future work.

2 Background
2.1 Definition of Reinspections
A recent literature review found that, on average, inspections find 57% of defects in code and design

documents (Briand et al., 1998c).  Given the substantial defect detection cost savings that can be

accrued by increasing the effectiveness of inspections (Briand et al., 1998c), contemporary research has

primarily focused on improved reading techniques, for example, (Laitenberger et al., 1999), and on

reinspections, for example, (Eick et al., 1992), for maximizing inspection effectiveness.  Our focus here is

on reinspections.

A reinspection, as referred to in this paper, is intended to scrutinize an already inspected document anew.

The purpose is to identify defects that have been missed during the initial inspection.  It is not to focus on

the changes made due to the initial inspection.

Some inspection implementations involve a follow-up phase at the end of the inspection process. Fagan

(Fagan, 1976) reports that this inspection phase aims at verifying whether the author has taken some

remedial action for each issue, problem, and concern detected. He also states that the follow-up phase is

an optional one in the inspection process and that it cannot be considered a reinspection.

In their book on software inspections, Strauss and Ebenau (Strauss and Ebenau, 1994) describe the

reinspection stage. However, the focus of this is to concentrate on the changes made after the initial

inspection, their interfaces and dependencies.  This is different from performing a reinspection to identify

defects that have been missed.
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Adams (Adams, 1999) notes that the occurrence of a reinspection should be a trigger for preventive

action since excessive use of reinspections is likely to be inefficient. He suggests improved entrance

criteria for inspections, use of preliminary informal inspections, and some form of root cause analysis.

The criteria for making the reinspection decision should be formulated to control:

• The quality of the document. By ensuring that the documents that pass the inspection attain a

minimal quality level.  A document quality level would be the remaining defect density.

• The quality of the inspection. By ensuring that the inspection process has achieved a minimal

quality level.  The process quality level would be defined as the proportion of defects in the

document that have been identified by the inspection.

Most organizations have not institutionalized reinspections as a technique for ensuring the quality of the

document and the inspection process. Those that do have utilized, for example, historical norms for

making the reinspection decision: if too many defects are found compared to the norm then this is taken

as evidence of a poor document, while too few are taken as evidence of a poor inspection (Eick et al.,

1992).  However, this approach assumes that variations among reviews are larger than variations among

documents. If this is not the case then this can lead to reinspections of high quality documents, and low

quality documents may easily pass. Other companies have followed a rule of thumb to determine whether

to perform a reinspection. One is that the number of defects remaining is roughly equal to the number of

defects found per page (Gilb and Graham, 1993). This rule of thumb, however, does neither consider the

quality level of the document nor the quality of the inspection. Moreover, there is no systematic evidence

on the validity or accuracy of this rule.

Work in the DCET area has aimed at providing a better means for making the reinspection decision.  We

review this work below.

2.2 An Overview of DCETs in Software Engineering
One can use capture-recapture (CR) models to decide on an objective basis whether or not to perform a

reinspection. CR models were initially developed to estimate the size of animal populations (Seber, 1982;

Otis et al., 1978; White et al., 1982). In doing so, animals are captured, marked, and then released on

several trapping occasions. The number of marked animals that are recaptured allows one to estimate

the total population size based on the samples’ overlap.  CR models are also applied in epidemiology to

estimate the size of a diseased population (Stephen, 1996) and for the estimation of birth and death rates

(Chandra Sekar and Deming, 1949) where, instead of multiple trapping occasions, multiple registration

systems are used.

The basic idea behind a CR model can be illustrated for the case of two occasions with reference to

Table 1 (see (Wickens, 1989)).  Suppose one wants to estimate the size M  of an animal population that

does not change over time, i.e., no animals enter or leave the population through birth, death,
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immigration, or emmigration. A number +1m animals are captured on the first day. These animals are

marked somehow and released into the population.  After allowing some time for the marked and

unmarked animals to mix, a second trapping occasion is performed on a second day. On this day, 1+m

animals are captured. This sample of 1+m  animals consists of 11m  animals bearing a mark (animals

captured on both days) and 21m  animals without a mark (newly captured animals).  There are also 12m

animals that were marked on the first day but were not caught on the second day.  The values in

parantheses are unknown. Therefore we do not know 22m  which is the number of animals not found in

either occasion.

Found on Occasion 2
Yes No

Found on Occasion 1 Yes
11m 12m +1m

No
21m )( 22m )( 2+m

1+m )( 2+m )(M

Table 1: Incomplete contingency table with observed values of defects found on two occasions.

The odds ratio for such a table can be estimated by:

2112

2211ˆ
mm
mm=α Eqn.  1

Under independence of the row and column variables, the odds ratio has a value of 1.  Therefore, by

rearranging Eqn.  1, we can obtain an estimate of 22m :

11

2112
22ˆ

m
mm

m = Eqn.  2

The total number of animals can be estimated by:

11

11
211211

11

2112ˆ
m

mm
mmm

m
mm

M ++=+++= Eqn.  3

The estimator in Eqn.  3 is known as the Lincoln-Petersen estimator.  It was also derived by (Chandra

Sekar and Deming, 1949) and applied in the estimation of birth and death rates.

In software engineering different types of CR models have been suggested and evaluated in the context

of controlling the testing process (Ardissone et al., 1998; Basin, 1972; Duran and Wiorkowski, 1981;

Isoda, 1998; Mills, 1972; Ohba, 1982). They have also been suggested for controlling the inspection

process (Eick et al., 1991; Eick et al., 1992).  More recently, CR models have been applied in estimating

the extent to which software engineering standards are used (El Emam and Garro, 1999).
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The idea behind using capture-recapture models for software engineering inspections is to let several

inspectors draw samples from the population of defects (by identifying defects during the preparation

stage of the inspection). The different inspectors reflect the various occasions depicted in Table 1. Based

on the overlap of defects amongst inspectors, one can estimate the number of defects remaining in a

software document using, for example,  the Lincoln-Peterson estimator. Using this estimate and the

known number of defects found in the inspection, it is possible to estimate the number of remaining

defects in the inspected document (i.e., estimating 22m  in the above table). Subsequently, armed with

this information, the inspection team can make an objective decision as to whether the document should

be reinspected to reduce its defect content before passing it on to the next phase of the development life

cycle.

Researchers at Bell Labs first applied CR models for requirements and design inspections (Eick et al.,

1991; Eick et al., 1992; Eick et al., 1993).  However, in these studies the true number of defects was

unknown and therefore an evaluation of their true efficacy was not possible.  Later work consisted of a

Monte Carlo simulation to evaluate the robustness of different CR estimators to violations of their

assumptions (Vander Wiel and Votta, 1993).

Objective empirical evaluation of CR models started with the study of Wohlin et al. (Wohlin et al., 1995).

However, this study was conducted with non-software engineering documents.  Subsequent work used

software engineering documents (Briand et al., 1997; Briand et al., 1998e; Miller, 1998; Runeson and

Wohlin, 1998).  All of the above work utilized models that were originally developed in wildlife research.

Other researchers considered the incorporation of Bayesian methods to estimate defect content and for

model selection (Basu and Ebrahimi, 1998), performed further evaluations of assumption violations when

using the estimation models (Thelin and Runeson, 1999a), evaluated the incorporation of previous

experiences in the estimate (Runeson and Wohlin, 1998), evaluated the applicability of CR models to

perspective-based reading (Thelin and Runeson, 1999b), and proposed new estimators for the case

when the independence assumption is violated (Embrahimi, 1997).

An alternative approach was proposed in (Wohlin and Runeson, 1998), the Detection Profile Method

(DPM).  The DPM is an intuitively appealing approach that can be easily explained graphically to

nonspecialists.  A later study suggested a method for selecting between a CR model and the DPM

(Briand et al., 1998a), and this was subsequently further evaluated in (Petersson and Wohlin, 1999).

In addition to the experiences reported by the researchers at Bell Labs, the use of the DPM at an

insurance company in Germany was reported in (Briand et al., 1998d), and the application of CR models

in telecommunications projects (Ardissone et al., 1998).

Thus far there has been no evaluation of subjective approaches for directly controlling software

inspections.  The only exception is one mention that the document quality (expressed as the number of
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defects not yet found) as estimated from a CR model matches the intuition of inspectors (Eick et al.,

1991; Eick et al., 1993).

2.3 Definition of Subjective Estimates of Effectiveness
A subjective estimate of effectiveness, as used in this paper, is defined as an individual inspector’s

perception of the percentage of defects in a document that s/he has found.  This estimate is produced

after reading the document and logging the defects that s/he has found.  For example, let’s say that an

inspector found 15 defects in a code document, and s/he estimates that 75% of the defects have been

found (i.e., the 15 defects represent only 75% of the total defects in the document).  It follows that the

inspector estimates that there were 20 defects in total in the document, and that 5 defects remain in the

document.  As we shall see later in the paper, an individual inspector’s estimate can be generalized to an

inspection team of arbitrary size.

Of course, the precision of this subjective estimate is expected to be affected by many different variables.

One of them may be, for example, the method that the inspector uses to read and understand the

inspected document (Laitenberger et al., 1999).  It is expected that a more systematic reading method

results in a more precise estimate.

2.4 The Use of Subjective Estimates in Software Engineering
Since, to our knowledge, there is no extensive literature on the behavioral and application aspects of

subjective estimates of inspection effectiveness, we can at least inform our endeavors by considering the

work done in the area of subjective cost estimation.2

Despite the predominant use of subjective cost estimation practices in industry (Heemstra, 1992; Hihn

and Habib-Agahi, 1991; Lederer and Prasad, 1992), there exists a strong bias against their use in

software engineering.  This is exemplified by statements such as “researchers can make a contribution by

finding practices that can discourage the use of the informal basis [for cost estimation … ], the

employment of an informal basis should probably be discouraged [… ], managers should make diligent

efforts to eschew them”3 (Lederer and Prasad, 1998). While such perceptions may be supported by some

empirical studies (e.g., see (Lederer and Prasad, 1992; Lederer and Prasad, 1998)), there also does exist

a body of empirical evidence showing that subjective cost estimates can outperform more objective

techniques (such as parametric models) (Vicinanza et al., 1991), or that they perform at least as well as

the objective techniques (Kusters et al., 1990).  Furthermore, cost estimation methods based on

substantial subjective information have been shown to perform impressively well (Briand et al., 1998b),

and contemporary cost estimation models are currently explicitly taking into account subjective expert

                                                       
2 This is also sometimes refered to as informal or intuitive cost estimation.
3 In this particular article, an informal basis is defined as intuition, comparison to similar, past projects based on personal memory,
and guessing.
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opinion through the use of Bayesian statistics to improve their predictive performance (Devnani-Chulani,

1997).

Perhaps the strongest statement that we have found in support of subjective estimates of cost, or at least

of their utility, was made by Hughes (Hughes, 1996).  There, he chides the negative perception that

subjective cost estimates have in the research community, and attempts to partially balance this by

providing a clarification of how subjective cost estimation is performed in practice.

Thus, despite the negative perceptions of subjective estimates in some quarters of software engineering,

this perception is certainly neither universal nor strongly justifiable.

Subjective cost estimation is arguably a more difficult problem than subjective estimation of inspection

effectiveness.  The reason being that for the former the software system to be developed is barely

conceptualized and the estimate is for a task that will be performed in the future, while for the latter the

document is completed and the estimate is for a task that has already been performed. However, if

subjective estimates have been shown to work well in a more difficult context, such as cost estimation,

then they have the potential of working well in an inspection effectiveness context.  This assertion is

further reenforced by the encouraging results of Selby (Selby, 1985) on the performance of subjective

estimates of inspection effectiveness with code documents.  The objective of the current study is

therefore to test this assertion, and evaluate the utility of subjective estimates of effectiveness for making

the reinspection decision.

3 Evaluating Subjective Estimates of Inspection
Effectiveness

3.1 Evaluation of DCETs
The goal of any DCET is to provide an estimate of the number of defects that existed in a document

before the inspection was performed and, thus, a characterization of the document quality. We will denote

this estimate as AD̂ . Therefore, if an inspection finds FD  defects, then the estimated remaining number

of defects in the document after the inspection is FAR DDD −= ˆˆ .

A commonly used criterion for evaluating a DCET in general is to compute the relative error, defined as:

A

AA

D
DD

RE
−=

ˆ
Eqn.  4
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where AD  is the true number of defects in the document.  In Appendix A (Section 9) we show that the

relative error, as defined above, only makes sense as an evaluative measure if the following two criteria

are used to make the reinspection decision.

To control the quality of a document, the document should be reinspected if the following inequality is not

satisfied:

( ) FDA DLOCQD +×<ˆ
Eqn.  5

where LOC  is the size of the document that was inspected (we use LOC  as a measure of size since

our study is on code documents; other size measures could be used as well), and DQ  is the minimal

defect density that a document should have before it passes the inspection.   In addition, to control the

quality of the process, the document should be reinspected if the following inequality is not satisfied:

P

F
A Q

D
D <ˆ Eqn.  6

where PQ  is the minimal permissible effectiveness of the inspection.

3.2 Evaluating Subjective Estimates of Effectiveness
Below we describe how subjective estimates of effectiveness can be evaluated, and also demonstrate

how the individual estimates of effectiveness can be applied to teams of inspectors.

An inspector provides a subjective estimate of his/her effectiveness, which we shall denote as Ê .

Therefore, if the inspector estimates that 75% of the defects in a document were found, the value of Ê
would be 0.75.

Let us define 1FD  as the number of defects found by the first inspector, and it is this inspector who

provides the subjective estimate of his/her individual effectiveness. Let FkD  be the sum of all other

unique defects found by the remaining k  members of the inspection team that were not also found by the

first inspector (i.e., remaining unique defects). The total unique defects found by the inspection team are

given by:

FkFF DDD += 1 Eqn.  7

Now we let:
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E
D

D F
A ˆ

ˆ 1= Eqn.  8

which is the estimate of defect content using the subjective estimate of effectiveness from the first

inspector.

We can define DQ  as:

LOC
DDd

Q FkFD
D

−−= 1 Eqn.  9

where Dd  is a threshold defect content of the document. The logic of the above formulation is that a

threshold defect density, DQ , depends on the document’s size, the number of defects found, and a

threshold quality of the document. This means that, given the document and the inspection that was

performed, Dd  is the maximum defect content of the document allowable to achieve the desired quality

level. By substituting Eqn.  9 and Eqn.  7 into Eqn.  5, we get:

DA dD <ˆ
Eqn.  10

where:

( ) FkFDD DDLOCQd ++×= 1 Eqn.  11

Therefore, the decision criterion in Eqn.  10 will be applicable whether an inspection is conducted by one

person or a team of inspectors. The only modification that is necessary, depending on the team size, is in

the threshold.

We can also define PQ  as:

P

FkF
P d

DD
Q

+= 1 Eqn.  12

where Pd  is a threshold defect content of the document. The logic of the above formulation is that a

threshold effectiveness, PQ , depends on the number of defects found, and a threshold quality of the

document. This means that, given the document and the inspection that was performed, Pd  is the

maximum defect content of the document allowable to achieve the desired effectiveness level. By

substituting Eqn.  12 and Eqn.  7 into Eqn.  6, we get:

PA dD <ˆ
Eqn.  13

where:
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P

FkF
P Q

DD
d

+= 1 Eqn.  14

Therefore, the decision criterion in Eqn.  13 will be applicable whether an inspection is conducted by one

person or a team of inspectors. The only modification that is necessary, depending on the team size, is in

the threshold.

The above formulations have demonstrated that a defect content estimate based on an individual

inspector’s subjective estimate of his/her effectiveness can be used for making the reinspection decision

irrespective of the inspection team size. We have also defined two decision criteria for controlling

document quality and inspection effectiveness that directly use the estimated defect content.

3.3 Evaluating Decision Accuracy
Evaluating a DCET using the relative error criterion can provide a good indication of its bias. However,

the sole reliance on relative error in studies that evaluate DCETs is not congruent with the manner in

which DCETs are used. The reason is that the decision that needs to be made is binary: pass or

reinspect. Therefore, a necessary complementary evaluation criterion would be the decision accuracy.

The decision that needs to be made for controlling document quality is:





≥
<=

DA

DA
D dD

dD
ˆ,0

ˆ,1λ̂ Eqn.  15

where Dλ̂  is the decision based on the DCET estimate, and is one (pass) if estimated defect density after

the inspection is below a certain threshold, and zero (reinspect) if the defect density is equal to or greater

than the threshold. In the above case, if AD̂  is only slightly lower than the threshold or much lower than

the threshold, it does not matter because the same decision will be made (pass).

Similarly, one can define the decision for controlling inspection process quality:





≥
<=

PA

PA
P dD

dD
ˆ,0

ˆ,1λ̂ Eqn.  16

where Pλ̂  is the decision based on the DCET estimate, and is one (pass) if the estimated effectiveness is

higher than a certain threshold, and zero (reinspect) if it is lower than or equal to the threshold.

In evaluating decision accuracy, one can compare the decision based on the estimates, Dλ̂  and Pλ̂ , with

the decision that would be made if the DCET was perfectly accurate, which we will denote as Dλ  and Pλ
respectively:
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



≥
<

=
DA

DA
D dD

dD
,0
,1

λ Eqn.  17

and:





≥
<

=
PA

PA
P dD

dD
,0
,1

λ Eqn.  18

The results of an evaluation study on N  inspections can be placed in a confusion matrix as shown in

Table 2.

Dλ̂  or Pλ̂
0 1

Dλ  or Pλ 0 n11 n12 N1+

1 n21 n22 N2+

N+1 N+2 N

Table 2: Notation for a confusion matrix for evaluating decision accuracy.

We define the decision accuracy in terms of the proportion of correct decisions that would be made using

the estimates:

N
nn

AAccuracy 2211
1

+== Eqn.  19

However, this definition of accuracy does not take into account the improvement due to the use of

subjective estimates. For example, at Bosch Telecom, as well as in many other environments,

reinspections are rarely performed. Hence, the “no reinspection” decision can be considered the default

one. If this default decision attains the desired product and process quality levels say 90% of the time and

the use of subjective estimates also results in achieving the desired quality levels 90% of the time, then

using the subjective estimates does not add any value. Thus, even though 90% accuracy for the

subjective estimates may seem impressive, under the above condition they are simply an overhead. We

therefore propose the following definition of relative accuracy that accounts for improvements over the

default decision:

d

d

A
AA

A
−== 1

2AccuracyRelative Eqn.  20

where dA  is the accuracy obtained when using the default decision, which in our case is always pass.

More precisely, dA  can be defined with reference to the following confusion matrix:
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Default Decision
0 1

Dλ  or Pλ 0 0 n12 N1+

1 0 n22 N2+

0 N N

Table 3: Notation for a confusion matrix for evaluating the default decision.

and:

N
n

Ad
22= Eqn.  21

The definition in Eqn.  20 indicates how much better a subjective estimate is beyond the default decision.

It is positive if the subjective estimate is better, zero if they are the same, and negative if the subjective

estimate is worse than the default decision.

4 Research Method
4.1 Description of the Environment
The data we analyzed in this paper were collected during a study that we performed with a total of 30

professional software developers at Bosch Telecom GmbH between March and July 1998.

Bosch Telecom GmbH is a major player in the telecommunications market and develops high quality

telecommunication systems (e.g., modern transmission systems based on SDH technology, access

networks, switching systems) containing embedded software. One major task of the embedded software

is the management of these systems. There are four typical characteristics for this kind of software. First,

it is event triggered. Second, there are real time requirements. Third, the software must be highly reliable

which basically means that the software system must be available 24 h. Finally, the developed software

system must be tailorable to different hardware configurations. Because of these characteristics and the

increasing competition in the telecommunications market, high product quality represents one of the most

crucial demands for software development projects at Bosch Telecom GmbH. The requirement of high

software quality and reliability highlights the need to make correct decisions about reinspecting

documents.

4.2 Description of the Study
The study consisted of three sessions in each of which 10 developers participated. Each session

consisted of four parts. The first one comprised an intensive exercise introducing the principles of

software inspection. This explanation covered the theory behind inspection roles, inspection processes,

and different techniques that help individuals detect defects in a code module (i.e., reading techniques).

The second part consisted of a practical exercise in which the subjects individually scrutinized a C-code

module for defects using a checklist-based reading technique (Fagan, 1976). The code modules were
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part of running software systems of Bosch Telecom GmbH and, defects were seeded in them

beforehand. We changed the code modules after each training session. This was to avoid that an

exchange of information between participants of different sessions would bias their performance. While

inspecting the code module, the subjects were asked to log all detected defects on a defect report form.

After this exercise we asked the subjects to fill out a debriefing questionnaire which required them to

make the subjective estimate of the percentage of defects they found in the code module (i.e., 100ˆ×E ).

The third part of a session consisted of a two-person inspection meeting in which its participants could

discuss the defects found in the reading exercises. The inspection team was formed by randomly

assigning each inspector to a team. The inspection team was asked to log all defects upon which both

agreed. The final part of each session consisted of a feedback session. For this, we then did an initial

analysis of all collected data by cross-checking the defect report forms with the known defect list and

presented the results to the subjects.

During the reading of the code documents, the participants did not communicate with each other.

Therefore, there are no effects due to collusion amongst participants by the nature of the study design.

The trainer for all three sessions was the same individual, therefore we do not expect trainer effects as

the study progressed.

4.3 Description of Subjects
All subjects participating in this study were professional software developers at Bosch Telecom GmbH.

Thus, we can consider our subject pool a representative sample of the population of professional

software developers. Although Bosch Telecom GmbH performs desk checks and reviews at various

stages of the development process to ensure that the quality goals are met, formal software inspection

and defect content estimation was a new activity for developers. For this, they could only rely on their own

heuristics from their development experience to come up with an estimate. In order to capture their

experiences we used the debriefing questionnaire. We captured the subjects' experience in the C-

Programming language and in the application domain on a six-point scale as the most prevalent types of

experience that may impact a subject’s estimate. Figure 1 shows boxplots of subjects’ C-programming

and application domain experiences.
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Figure 1 : Subjects’ experience with the C-programming language and the application domain

We found that subjects perceived themselves experienced with respect to the programming language

(median of 5 on the 6 item scale) and rather experienced regarding software development in the

application domain (median of 4 on the six item scale). This corroborates our assumption that our pool of

subjects consists of expert developers rather than novices.

4.4 Description of Materials – Code Modules
Table 4 shows the size of the code module in Lines of Code (without blank lines), their average

cyclomatic complexity using McCabes complexity measure, and the number of injected defects.

Size (LOC) Average Cycl.
Complexity

Number of injected
defects

Code Module 1 666 3.20 10
Code Module 2 375 6.67 8
Code Module 3 627 5.44 11

Table 4: Characteristics of the Code Modules.

As Table 4 reveals the code modules have different characteristics and are considered to be typical of

code modules at Bosch Telecom GmbH. The code modules were randomly assigned to each of the

training sessions to alleviate the possibility that there is a group-module relationship,

We asked either the author or a very experienced software developer (if the author participated in the

study) to inject defects into the code modules. These defects should be typical for the ones that are

usually detected in testing and should not be detectable automatically by compilers or other tools, such as

lint.

The subjects sometimes reported more defects on their defect report forms than were seeded in a code

module. When a true defect was reported that was not on the list of seeded defects, we added this defect

to the list of known defects and reanalyzed the defect report forms of all the remaining subjects. Whether
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a defect was a true defect was our decision (to some extent based on discussions with the author or the

person who seeded defects). Table 4 shows the final number of defects in each module.

Since during our study we use the results of individual inspectors’ actual effectiveness to calculate

accuracy, and an inspector’s subjective estimate is invariably influenced by the number of defects that he

or she actually finds, the results may be distorted by false positives. False positives are potential defects

a subject reported on his or her defect report form, which turn out not to be “real” defects. If a subject

reports many false positives he or she may be too confident in the quality of the inspected product and

the effectiveness of the inspection process. This may result in an overestimation of personal

effectiveness. In general we found that our subjects reported very few false positives. Therefore, this

effect has only a minor influence on the results.

4.5 Description of Materials – Checklists
The CBR approach attempts to increase inspection effectiveness and decrease the cost per defect by

focusing the attention of inspectors on a defined set of questions. In our study, we provided the inspectors

with a generic checklist, that is, a checklist that was not particularly tailored to the application domain of

Bosch Telecom GmbH. We limited the number of checklist items to 27 questions to fit on one page since

this is recommended in the literature (Chernak, 1996). We structured the checklist according to the

schema that is presented in (Chernak, 1996). The schema consists of two components: “Where to look”

and “How to detect”. The first component is a list of potential “problem spots” that may appear in the work

product and the second component is a list of hints on how to identify a defect in the case of each

problem spot. As problem spots we considered data usage (i.e., data declaration and data referencing),

computation, comparison, control flow, interface, and memory. For each problem spot, we derived the

checklist items from existing checklists (Nasa, 1993) and books about the C Programming language

(Deitel and Deitel, 1994; Kernighan and Ritchie, 1990). Hence, the problem spots as well as the

questions help reveal defects typical in the context of software development with the C programming

language. The complete checklist can be found in Appendix B.

4.6 Data Analysis
At the outset, we evaluate the relative error (as defined in Eqn.  4) of the subjective defect content

estimate.  This gives us an overview of the bias of these types of estimates.

We then evaluate the relative decision accuracy for the two types of scenarios mentioned in Section 3:

controlling document quality, and controlling inspection effectiveness. For each scenario we varied the

thresholds, DQ  and/or PQ , and the number of defects that may be found by other members of an

inspection team. This would allow us to investigate the sensitivity of using subjective estimates to

threshold variations, and also to variations in the proportion of defects that the estimator finds.

For the number of defects that are found by other members of an inspection team, we defined:
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( ) ω×−= 1FAFk DDD Eqn.  22

where ω  is a proportion defined to be 0, 0.25, 0.5, and 0.75.4 We present our results in the form of plots

of the relative accuracy (see Eqn.  20) to evaluate how well subjective estimates perform.

5 Results
5.1 The Relative Error of Subjective Estimates
The box and whisker plot in Figure 2 shows the relative error (as defined in Eqn.  4) of the subjective

estimates for each of the three modules (the number of estimates for each plot is 10). As can be seen the

median RE is quite close to zero, but may lead to overestimation (module 2) or underestimation (module

3).  Also, it will be noted that for module 2 there is one extreme outlier. This outlier can be explained by

the fact that this person usually develops software for a different platform within the application domain.

This may be the reason that the person was unsure about the percentage of defects found in the

inspected code module and, therefore,  followed a conservative strategy to provide a very low

effectiveness estimate. But since the person’s real effectiveness was much higher than the estimated

one, a large, positive RE could be observed.5

To determine whether there are differences in accuracy across the different modules we performed a

median test based on the chi-square statistic.  We divided the observations for each module into two

classes based on whether they are above or below the overall median (which is zero).  A 3x2 contingency

table was then used to test for association between the modules and difference from the overall median.

The chi-square value was not statistically significant at an alpha value of 0.1.  Given that there are no

discernable differences in accuracy across the modules, we pool them.

The box and whisker plot in Figure 3 shows the overall relative error. Here, it is seen that the median

relative error is zero. This is quite encouraging as it indicates negligible bias in using subjective estimates

of effectiveness to estimate defect content.

                                                       
4 The zero values denote that the inspection team consists of only one person.
5 Exclusion of this outlier does not affect our conclusions. Therefore, all subsequent analyses include this data point.
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Figure 2: The relative error of subjective estimates for each of the three modules.
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Figure 3: The relative error of subjective estimates for all three modules.

We evaluated the relationship between experience, as measured using the variables in Figure 1, and the

relative error using the Spearman rank order correlation coefficient. We found none of the two

relationships to be statistically significant at an alpha level of 0.1.  Therefore, we have no evidence that

the differences in experience in our subjects influenced the accuracy of their subjective estimates.
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5.2 Accuracy of Subjective Estimates
To help interpret the results, we first present the default decision accuracy ( dA ) as the defect density

threshold changes in Figure 4.  The different lines indicate variations in the number of defects found by

the remainder of the inspection team. The x-axis is varied from 1 to 100 defects/KLOC.
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Figure 4: Changes in the accuracy of the default decision as the defect density threshold changes.

It can be seen that at the least stringent thresholds (higher values of defects per KLOC) the default

decision is correct almost all the time (accuracy is one).  This is because at these low stringency levels

the default decision of passing the document is correct almost all of the time. At the more stringent

thresholds the default decision of no reinspection will frequently be incorrect, since in such circumstances

the document will more frequently require reinspection.  Also, it can be seen that the fall in default

decision accuracy occurs sooner for the least effective inspection team ( 0=ω ) when compared to the

most effective inspection team ( 75.0=ω ).  This is because the default decision will be correct for a

larger range of thresholds for the more effective teams.

In Figure 5 we can see the relative accuracy ( 2A ) for different thresholds of defect density.  There is

essentially no difference between the subjective estimates and the default decision making criterion

(accuracy is at or close to zero) for the less stringent thresholds. As noted above, this is because the

default decision is frequently correct, so not much improvement can be gained over that. At the more
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stringent thresholds it is relatively easy to achieve an improvement over the default decision, and

therefore the relative accuracy can be dramatically large.

It is noted that the relative accuracy value rarely if ever dips below zero. This means that using subjective

estimates will, in general, not be worse than the default decision, and in cases where the threshold is

stringent, considerably better. This indicates a good ability of the subjective estimates to discriminate

between instances where a reinspection is required from those where it is not.  One can then draw the

conclusion that using subjective estimates to control document quality can be implemented irrespective of

the threshold that is chosen.

The best accuracy results are obtained the lower the value of ω .  The reason for this can be seen in

Figure 4, whereby at larger ω  the default decision is correct most frequently for longer, and therefore

presents a bigger hurdle.
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Figure 5: Variation of Accuracy with the defect density threshold for different numbers of defects found by
the remainder of an inspection team.

In Figure 6 we can see the results for controlling the effectiveness of the inspection process.  The x-axis

represents the threshold effectiveness, expressed as a percentage. At the less stringent thresholds (i.e.,

low effectiveness) there is no difference between using the subjective estimates and the default decision

criterion. However, at the more stringent thresholds, the subjective estimates tend to perform substantially

better.
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Similar to the conclusion that we drew above, we can state that using subjective estimates for controlling
the effectiveness of inspections will almost always at least perform as well as the default decision, and in
the cases with more stringent thresholds, will perform better.
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Figure 6: Variation of accuracy with the effectiveness threshold for different numbers of defects found by
the remainder of an inspection team.

Based on the above results, it is a reasonable suggestion that practitioners use subjective estimates to

control product and process quality, irrespective of the thresholds that are chosen, if more objective

DCET’s are not available. This has the advantage in that the costs of using such a technique are

negligible, and above we demonstrate that it has advantages in terms of decision accuracy.

5.3 Discussion
In this section we discuss the results and the issues that can arise when applying subjective estimates in

practice.

5.3.1 Inspection Coverage

Some companies may not be in a position to inspect all of their development products due to schedule or

effort constraints. The question that arises in this situation is whether to perform a reinspection on one

document (if necessary) or inspect another document that has not been inspected so far. However, this is

not a decision of the members of an inspection team. It is rather one that the project management must
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make . If the management committs itself to developing high quality software, it must spend the effort for

a reinspection once the inspection team has decided on it. The subjective estimates of the inspection

team members therefore should not be biased by the question of whether to perform reinspections at all.

5.3.2 Personal Bias and Political Pressure

An obvious danger with subjective estimates is that they are liable to personal bias and political pressure.

For example, consider the situation where a team is behind schedule and is under very high pressure to

pass a document to the next phase. This may tempt the exaggeration of subjective effectiveness to pass

the document. However, actions that defeat the purpose of a quality assurance technique, such as

inspection, can be performed whether the reinspection decision is subjective or based on objective

information. This argument is further supported by Hughes (Hughes, 1996) who states that, in the realm

of cost estimation, “all estimating methods may be liable to personal bias and political pressure”.  For

instance, when using a parametric estimation model, the estimator may be pressured to modify the input

subjective cost drivers if the estimated cost is unacceptable (say, it is too high and the project manager is

very eager to have his/her project approved by senior management).

Nevertheless, below we discuss managerial actions that may discourage such biases.

5.3.3 Estimate Accountability

A recent study on cost estimation practices found evidence supporting the claim that when estimators are

held accountable for their estimates, the accuracy of the estimates increases (Lederer and Prasad, 1998).

It would therefore seem reasonable that, should subjective estimates of effectiveness be introduced into

an organization, the estimators ought to be held accountable for document quality and inspection process

quality.  Such a practice would likely dilute the negative impact of personal bias and political pressure.

5.3.4 Collusion Amongst Inspectors

Collusion amongst inspectors occurs if inspectors discuss their defects or work jointly during the

preparation phase of the inspection.  Dealing with collusion has been a concern in the DCET literature

(Basu and Ebrahimi, 1998; Ebrahimi, 1997; Eick et al., 1993).

If there is collusion where the subjective estimator is involved then we can consider two cases:

• If the other inspector(s) find many defects that s/he did not find, then this may push the estimator

to reduce his/her estimate of personal effectiveness.

• If the other inspector(s) find few defects that s/he did not find, then this may prompt the estimator

to raise his/her estimate of personal effectiveness.

Should collusion of the former type exist, we would expect an underestimation of subjective effectiveness.

Collusion of the latter type would result in overestimation of subjective effectiveness.  The evaluation of

the impact of collusion on relative accuracy ought to be an item for future research.  It should be noted

that during our study the design precluded collusion.
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5.3.5 Subjective Estimates vs. Objective DCETs

Do we suggest that one do away with objective DCETs and simply use expert judgement in making the

reinspection decision? Certainly the case seems attractive. Subjective estimates are low cost and do not

require additional data collection to operationalise.

Such a suggestion, however, would not be corroborated by the results of this study since we did not

compare the decision accuracy of subjective estimates with those from objective DCETs. Given the

encouraging performance of subjective estimates as indicated in the current study, it would certainly be of

value to perform this comparison in future research.

5.3.6 Subjective Estimates and Decision Transparency

A recent study (Lederer and Prasad, 1998) found a positive relationship between user commitment and

participation in IS development and the use of more objective methods for cost estimation.  This may be

interpreted that the use of objective methods provides visibility and transparency in the estimation

process, and may also provide justification for decisions that are made.  It is expected that such benefits

would be dampened with subjective estimates.

This finding and its interpretation would suggest some inherent disadvantages when using subjective

estimates of effectiveness as the sole basis for making the reinspection decision, even if accountability is

enforced.  It is therefore recommended that subjective estimates of effectiveness be applied primarily in

three contexts:

• As a starting point for controlling software inspections.  The ease with which such a practice can

be institutionalized and the evidence we present as to its efficacy supports this recommendation.

• Evaluating objective DCETs.  In many practical situations the real number of defects or the real

decision is unknown. This makes it difficult to evaluate an objective DCET in a particular

environment.  However, given the good decision accuracy performance of subjective estimates,

they can be used to evaluate objective DCETs.

• Bayesian DCETs.  Our results would certainly recommend the use of subjective estimates as

informative priors to Bayesian capture-recapture models.  This is likely to result in improved

decisions when compared to the more common (non-Bayesian) models.

5.3.7 Relevance of Thresholds

Another point that should be emphasized as a consequence of this study is that the performance of any

method for making the reinspection decision, whether subjective or objective, is inherently linked to the

threshold that is used for controlling document and inspection process quality.  Therefore, future studies

should either evaluate the methods across all reasonable thresholds, or select a number of thresholds as

the basis for the evaluation.
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5.4 Threats to validity
It is the nature of any empirical study that assumptions are made that later on may restrict the validity of

the results. Here, we list these assumptions that impose threats to internal and external validity.

5.4.1 Threats to Internal Validity

One important potential threat to the internal validity of our study concerns defect severity. Similar to

previous studies that evaluate DCETs, we do not consider the characteristics of the defects that are

found. With characteristics we mean, for example, the severity or the criticality of defects. An inspection

that reveals few extremely critical defects is different from an inspection that detects many uncritical

defects. When only looking at some thresholds one may decide not to reinspect in the first case while

making a reinspection in the second one. However, from a purely subjective point of view, it would be

better to reinspect the first one to be sure that there are no other major defects and that the defects are

corrected without introducing other or even more major defects (in some existing inspection

implementations, a follow-up phase is performed as part of the inspection for checking this (Gilb and

Graham, 1993)). However, it is more difficult to model the characteristics of the defects in a decision

criterion. One approach might be to just consider critical or severe defects for decision making.

A second potential threat to the internal validity of our study is related to the fact that seeded defects were

used.  Despite us taking special care to alleviate this (for example, by reinjecting previously detected

defects rather than making up new defects), there is always the danger that seeded defects are not the

same as actual defects.  Specifically, they may be easier to detect than actual defects.  If an inspector

realizes that the defects found are easy, then s/he may be suspicious that the defects are too easy and

that the difficult defects were not found yet, hence deflating the effectiveness estimate.  However, we did

not observe this effect in our data, therefore this potential threat may not be severe.

5.4.2 Threats to External Validity

Our study was performed with subjects and code documents from a single organization. While this enjoys

greater external validity than doing studies with students in a "laboratory" setting, it is uncertain the extent

to which the results can be generalized to other organizations. However, our result are in line with

previous findings (Selby, 1985).

6 Conclusion
Knowing the number of defects in an inspected document can provide the basis for deciding whether to

reinspect a document. Making the correct reinspection decision provides a means for ensuring that

inspected documents have a defect density below a prespecified threshold, and that the inspection

process has attained a minimal level of effectiveness.
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Thus far, software engineers have proposed capture-recapture models and the Detection Profile Method

as objective means for estimating the number of defects in a document. Both of these approaches utilize

data collected during an inspection to make an estimate.

In this paper we evaluated subjective estimates of effectiveness by the inspectors as a basis for making

that decision. We showed how subjective estimates can be used for such a purpose and detailed an

empirical evaluation of subjective estimates. The empirical study was performed with 30 professional

software engineers. Our results indicate that subjective estimates of defect content have a median

relative error of zero, and do indeed consistently outperform the default decision of not reinspecting a

document.

Given that subjective estimates are easy to perform, they can provide a cost effective way for making the

reinspection decision. This is especially true since we have shown that the subjective estimate of only a

single inspector is necessary to make the decision for a team-based inspection.

These results are encouraging for organizations contemplating the use of reinspections for controlling

their product and process quality.  It can be recommended that subjective estimates be used as a starting

point for controlling inspections and for evaluating more objective decision models. From a research

perspective, our results suggest that future studies ought to compare the performance of subjective

estimates with more objective techniques such as capture-recapture models and the Detection Profile

Method, evaluate the use of Bayesian capture-recapture models, and ought to consider the effects of

collusion among inspectors.  In addition, in our study the estimates did not take into account the

confidence of the inspectors in their estimates.  Future work ought to consider the inspectors expressing

a distribution of their effectiveness rather than a point estimate, much in the same manner as recent

studies of subjective estimates of cost (Connolly and Dean, 1997; Hihn and Habib-Agahi, 1991; Host and

Wohlin, 1997; Host and Wohlin, 1998).
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9 Appendix A: Current Approaches for Evaluating
DCETs

The literature on DCETs and their evaluation in software engineering has been rather ambiguous about

how the estimates from a DCET can be used in practice. This is disconcerting given that criteria for the

evaluation of a DCET’s estimation accuracy should be strongly congruent with the decisions that are

made using the estimates. In this section we review existing approaches for evaluating a defect content

estimation technique’s accuracy (whether objective or subjective). It is found that the criteria that have

been used thus far are not appropriate, and alternative criteria are proposed.

First we need to define some notation:

Term Definition

AD The actual number of defects in a document.

AD̂ The estimated number of defects in a document.

FD The unique number of defects found during an inspection.

FAR DDD −= The actual number of remaining defects after the inspection. By

definition this value is always positive.

FAR DDD −= ˆˆ The estimated number of remaining defects after the inspection.

For the purposes of our exposition, we assume that FA DD >ˆ

LOC The size of the inspected document in Lines of Code. This can

be any size measure and does not have to be Lines of Code,

but for the sake of our exposition we use LOC.

It has been stated that “One approach to optimize the effectiveness of inspections is to reinspect a

software document that is presumed to still have high defect content. The reinspection decision criterion

could be based on the number of remaining defects after an inspection, which can be estimated with

defect content models.” (Briand et al., 1997), “The [capture-recapture] method is based on the review

information from the individual reviewers and through statistical inference, conclusions are drawn about

the remaining number of defects after the review. This would allow us to take informed and objective

decisions regarding whether to continue, do rework, or review some more.” (Wohlin and Runeson, 1998),

and “Based on the estimate of remaining defects, informed decisions could be taken whether to accept

the quality of the artifact or not.  If the estimated number of defects is below a given threshold, the artifact

can be released for the next phase. Otherwise, it has to be improved by, for example, a re-inspection.”

(Runeson and Wohlin, 1998).
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An obvious interpretation of such statements is that a DCET should be used to only pass a document if

the estimated number of remaining defects is less than some constant threshold:

TR DD <ˆ Eqn.  23

where TD  is some threshold defined by the organization as symbolizing a “minimum acceptable quality”

in terms of the number of remaining defects in an inspected document. As illustrated above, it has been

argued that this allows one to make an objective decision as to whether the document is of sufficient

quality, and if not then to reinspect it.

Below we show that the manner in which DCETs have been evaluated in the software engineering

literature is inappropriate given the decision criterion in Eqn.  23 because of a discordance between the

evaluation and decision criteria, and because current evaluation practices make unrealistic assumptions

about inspected documents.

9.1.1 Discordance between Evaluation and Decision Criteria

In many previous studies that empirically evaluated DCETs, the relative error was used as an accuracy

evaluation criterion, for example, (Briand et al., 1997; Briand et al., 1998a, Petersson and Wohlin, 1999;

Runesion and Wohlin, 1998; Thelin and Runeson, 1999a; Thelin and Runeson, 1999b). This was defined

as:6

A

AA

D
DD

RE
−=

ˆ
1 Eqn.  24

This variable is zero if the DCET estimates defect content perfectly, negative if it underestimates, and

positive if it overestimates. This is usually aggregated through the mean or median across multiple

inspections.

However, it is RD̂  that is used to make the decision according to Eqn.  23, not AD̂ , therefore a more

sensible criterion for evaluating a DCET that evaluates the accuracy of the variable that is used in actual

decision making would be:

( ) ( )
FA

AA

FA

FAFA
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RR

DD
DD

DD
DDDD
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DD

RE
−
−=

−
−−−=−=

ˆˆˆ
2 Eqn.  25

As will be noted, Eqn.  24 is equal to Eqn.  25 only if 0=FD , which almost always is not the case. The

consequence is that 21 RERE < , and hence the evaluations will seem better with Eqn.  24 than if Eqn.

25 is used.7

                                                       
6 Other studies, such as (Wolin and Runeson,1998), used the absolute relative error.
7 This point was also alluded to in (Vander Wiel and Votta, 1993).
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9.1.2 Unrealistic Assumptions About Inspected Documents and Estimation Models

As noted in the body of the paper, in making the reinspection decision, one wishes to control two aspects

of quality:

• The quality of the document. By ensuring that the documents that pass the inspection attain a

minimal quality level.

• The quality of the inspection. By ensuring that the inspection process has achieved a minimal

quality level.

It is shown below that following the decision criterion in Eqn.  23 achieves neither of these objectives.

The decision criterion to control the quality of the document can be based on estimated residual defect

density:

D
R Q

LOC
D <
ˆ

Eqn.  26

where DQ  is some threshold document quality level. The above decision criterion stipulates that a

document must have a residual defect density that is lower than some accepted level. This accepted level

would be defined as a constant for a project or an organization. This way, an organization can ensure that

a document that passes inspection will be of a certain quality. For this purpose, the estimated residual

defect density, 
LOC
DR̂ , is used. The question then is what is the difference between the decision criterion

in Eqn.  23 and the criterion that controls document quality defined in Eqn.  26 ?

It can be seen that Eqn.  23 is equal to Eqn.  26 only if LOCQD DT ×= . If TD  is a constant, then

LOC  would also have to be a constant. The implication is that using the decision criterion in Eqn.  23 will

consistently result in the same decisions as Eqn.  26 only if all documents that are inspected are of the

same size. This is unlikely to be true in many cases as the documents that go through an inspection will

not be of a uniform size.

The problematic aspect can be illustrated through an example. Let us assume that we have two

documents, A and B. A is 600 LOC and B is 50 LOC. Further, let us assume that after an inspection, the

DCET is used to predict 5 remaining defects in both documents, and that our threshold quality level, DQ ,

is 0.01 defects per LOC. In the former, the estimated defect density is approximately 0.008 while for the

latter it is 0.1. According to the decision criterion in Eqn.  23 both documents would either pass or be

reinspected. However, to control document quality, we should pass document A but reinspect document

B.
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The skeptic can argue that it may be clear, in an intuitive sense, that 5 remaining defects in a 50 LOC

document would seem problematic to the inspection participants. While this may be true, it indicates that

the decision is no longer objective, which defeats the whole point of using an objective DCET.

To control the quality of the inspection process, one can use its estimated effectiveness as follows:

P
A

F Q
D
D >ˆ Eqn.  27

where PQ  is some threshold inspection process quality level that is constant for the project or

organization. The above decision criterion stipulates that an inspection must achieve an effectiveness that

is larger than some minimal accepted level. This way, an organization can ensure that its inspections

achieve a certain quality. We can then write the decision criterion of Eqn.  27 as:

P
A

RA

A

F Q
D

DD
D
D >−= ˆ

ˆˆ
ˆ

Eqn.  28

It can be seen that Eqn.  23 is equal to Eqn.  28 only if )1(ˆ
PAT QDD −= . If TD  is a constant, then AD̂

would also have to be a constant. The implication is that decisions made using Eqn.  23 will be

consistently the same as using Eqn.  28 only if DCETs always predict the same number of defects in all

documents, which will not be the case, and if it was the case then the DCETs would be useless.  Further,

let’s say we achieve the ultimate outcome of devising a DCET that has 100% accuracy (i.e., AA DD =ˆ ),

then the assumption that would need to be made is that all documents that go through inspections have

the same defect content before the inspection (i.e., are of the same quality). This is unlikely to be true in

many cases as the documents that go through an inspection will not be of a uniform quality beforehand.

The problematic aspect can be illustrated through an example. Consider a stipulation that all inspections

should attain at least 0.6 effectiveness. This means that 60% of the defects in a document are found

during the inspection. Let’s assume we have two documents, A and B. Document A has 30 defects in it

before the inspection, and document B has 20 defects. During the inspections, 20 defects were found in

document A, and 10 defects in document B. In both cases the number of remaining defects is 10. If we

have a perfect DCET, we will know that the number of remaining defects is 10, and so we will make the

same decision for both documents as to whether they should be reinspected using the criterion in Eqn.

23. However, the effectiveness of the inspection of document A is approximately 0.66, and for document

B is 0.5. So, to control inspection process quality, we would reinspect document B to attain our threshold

level of effectiveness. Therefore, using the criterion in Eqn.  23 does not actually control the effectiveness

of the inspection process.

The above exposition has shown that the most obvious decision criterion as implied from the literature

does not necessarily control document quality nor inspection process quality. In order to do so, all
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documents that are inspected would have to be of the same size and of the same quality, or that DCETs

always make the same prediction. Clearly, then the criterion in Eqn.  23 is not a good one. Below we

consider some alternatives.

9.1.3 Possible Alternatives to Relative Error

We can propose that DCETs should be used to explicitly control one or both of the qualities in practice by

using the criteria in Eqn.  26 and Eqn.  28.  From the perspective of the previous literature that evaluates

DCETs, we can consider alternative definitions of relative error that are congruent with the decision

criteria in Eqn.  26 and Eqn.  28.  For controlling document quality, we can define:
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Eqn.  29

Therefore, the previously used definition of relative error (Eqn.  24) provides accuracy results that are not

congruent with the decision criterion in Eqn.  26.

For controlling process quality, we can define:
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Eqn.  30

This then would be the appropriate definition of relative error when one applies DCETs for making the

decision as defined in Eqn.  28.  As can be seen, this is inconsistent with the definition of relative error in

Eqn.  24.

The above formulation indicates that the commonly used definition of relative error (defined in Eqn.  24)

does not actually indicate an accuracy that is useful for controlling document quality and inspection

process effectiveness when used with the alternative decision criteria in Eqn.  26 and Eqn.  27.

9.1.4 Summary

We have shown that the commonly used criterion for evaluating DCETs, the relative error (as defined in

Eqn.  24), does not actually give you an indication of whether the DCET can be used for controlling

document quality nor inspection process quality when used in conjunction with the decision criterion of

Eqn.  23.  Furthermore, alternative decision criteria that do control document and process quality, given in

Eqn.  26 and Eqn.  27, are incongruent with the decision criterion of Eqn.  23, and so is relative error as

defined in Eqn.  24.
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9.2 Appropriate Criteria for Evaluating Accuracy
To resolve the difficulties unearthed above with the commonly used evaluation criterion, one can use

variable thresholds for decision making. A variable threshold combines the specifics of a particular

inspection with the fixed expected product quality level  DQ  or process quality level PQ .

We reformulate Eqn.  26 as:

D
FA Q

LOC
DD <−ˆ

Eqn.  31

( ) FDA DLOCQD +×<ˆ
Eqn.  32

Therefore, the estimated number of defects in the document can be applied directly in the decision

criterion. Also, the decision criterion maintains the desired document quality level by defining a different

threshold depending on the document size. Similarly for inspection effectiveness, we can reformulate

Eqn.  27 as:

P

F
A Q

D
D <ˆ Eqn.  33

The above results also indicate that the currently used relative error criterion (Eqn.  24) is congruent with

the manner in which DCETs are used in practice for controlling document quality and process

effectiveness only if the decision criteria defined in Eqn.  32 and Eqn.  33 are used.

10 Appendix B: The Checklist
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Item no. Where to look How to detect

1 Data declaration Are all variables declared before being used?

2 If variables are not declared in the code module, will it be sure that these
variables are global ones?

3 Are the initializations of declared variables correct?

4 Are the types of variables correct?

5 Data referencing Are variables referenced that have no value (i.e., which have not been
initialized)?

6 Are the indices of arrays within the specific boundaries?

7 Are all constants used correctly

8 Calculation Are there any calculations with variables of different types?

9 Does a calculation lead to underflow or overflow values? If yes,  are
these cases considered?

10 Does a calculation involve a division by 0?

11 Is it possible that a variable is assigned a value beyond its scope?

12 Is the priority of operators considered (multiplication > addition)?

13 Are the rules of arithmetik considered (2*A/2 must not be A!)?

14 Comparison Are there any comparisons between variables of different type?

15 Are the operators for comparison used correctly?

16 Are the boolean operations correct?

17 Does the boolean operations depend on evalution order?

18 Are the values of the boolean operations correct (0 and 1)?

19 Are there any comparisons between floating numbers and is this correct?

20 Control Flow Does each loop terminate correctly?

21 Is it possible that a loop is never executed (e.g., entry condition is never
fulfilled)?

22 Interfaces Are the number and types of variables in each function interface correct?

23 Does a function modifies a variable although it should be call by value?

24 Do the global variables have the same definition in each function they
are used?

25 Memory Are pointers used correctly (referencing and de-referencing)?

26 Is enough memory allocated if necessary and de-allocated afterwards?

27 Is too much or too little memory allocated?
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