National Research Conseil national B
I*I Council Canada de recherches Canada ERB-1059

Institute for Institut de Technologie
Information Technology de I'information

NC-CNC

An Internally Replicated
Quasi-experimental
Comparison of Checklist and
Perspective-based Reading of
Code Documents

Oliver Laitenberger, Khaled El Emam,
and Thomas Harbich
September 1999

Canada NRC 43603

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de Technologie
Information Technology de I'information

An Internally Replicated Quasi-experimental
Comparison of Checklist and Perspective-based
Reading of Code Documents

Oliver Laitenberger, Khaled EI Emam,
and Thomas Harbich
September 1999

Copyright 1999 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

An Internally Replicated Quasi-Experimental
Comparison of Checklist and Perspective-based
Reading of Code Documents

Oliver Laitenberger Khaled El Emam® Thomas Harbich
Fraunhofer Institute for National Research Council, Canada Bosch Telecom GmbH
Experimental Software Institute for Information Technology Gerberstrasse 33

Engineering Building M-50, Montreal Road D-71520 Backnang
Sauerwiesen 6 Ottawa, Ontario Germany
D-67661 Kaiserslautern Canada K1A OR6 Thomas.Harbich@pcm.bosch.de
Germany Khaled.EI-Emam@iit.nrc.ca

laiten@iese.fhg.de
Abstract

The basic premise of software inspections is that they detect and remove defects before they propagate
to subsequent development phases where their detection and correction cost escalates. To exploit their
full potential, software inspections must call for a close and strict examination of the inspected artefact.
For this, reading techniques for defect detection may be helpful since these techniques tell inspection
participants what to look for and, more importantly, how to scrutinise a software artefact in a systematic
manner. Recent research efforts investigated the benefits of scenario-based reading techniques. A
major finding has been that these techniques help inspection teams find more defects than existing
state-of-the-practice approaches, such as, ad-hoc or checklist-based reading (CBR). In this paper we
experimentally compare one scenario-based reading technique, namely perspective-based reading
(PBR), for defect detection in code documents with the more traditional CBR approach. The comparison
was performed in a series of three studies, as a quasi-experiment and two internal replications, with a
total of 60 professional software developers at Bosch Telecom GmbH. Meta-analytic techniques were
applied to analyse the data. Our results indicate that PBR is more effective than CBR (i.e., it resulted in
inspection teams detecting more unique defects than CBR), and that the cost of defect detection using
PBR is significantly lower than CBR. This study therefore provides evidence demonstrating the efficacy
of PBR scenarios for code documents in an industrial setting.

Keywords: Software Inspection, Perspective-based Reading, Quasi-experiment, Replication, Meta-
analysis

1 Introduction

Since Fagan’s initial work presented in 1976 [24] software inspection has emerged in software
engineering as one of the most effective and efficient methods for software quality improvement. It has
been claimed that inspections can lead to the detection and correction of anywhere between 50% and
90% of the defects in a software artifact [25][30]. Moreover, since inspections can be performed at the
end of each development phase and since the defects are typically found close to the point where they
are introduced, rework costs® can be reduced considerably. For example, a Monte Carlo simulation has
indicated that on average, the implementation of code inspections reduces life cycle defect detection

' This work was partially done while El Emam was at the Fraunhofer Institute for Experimental Software Engineering,
Kaiserslautern, Germany.

2 _.
This constitutes the costs associated with correcting defects.

v39 -01/9/99 1

costs by 3%%, and that the implementation of design inspection reduces life cycle defect detection costs
by 44% [5]".

A software inspection usually consists of several activities including planning, defect detection, defect
collection, and defect correction [53]4. Inspection planning is performed by an organiser who schedules all
subsequent inspection activities. The defect detection and defect collection activities can be performed
either by inspectors individually or in a group meeting. Recent empirical findings reveal that the synergy
effect of inspection meetings is rather low in terms of impact on defects detected [55][85][44]. Therefore,
defect detection can be considered as an individual rather than a group activity. Defect collection, on the
other hand, is often performed in a team meeting (i.e., an inspection meeting) led by an inspection
moderator. The main goals of the team meeting are to consolidate the defects inspectors detected
individually, to eliminate false positives, and to document the real defects. An inspection often ends with
the correction of the detected defects by the author.

Although each of these activities is important for a successful inspection, the key part of an inspection is
the defect detection activity. Throughout this activity inspectors read software documents and check
whether they satisfy quality requirements, such as correctness, consistency, testability, or maintainability.
Each deviation is considered a defect. Because of its importance, adequate support for inspectors during
defect detection can potentially result in dramatic improvements in inspection effectiveness and
efficiency. The particular type of support that we focus on in this paper is the reading technique that is
used during the defect detection activitys.

In practice, most industrial inspection implementations use ad-hoc or checklist-based reading (CBR)
during defect detection [24][30]. Ad-hoc reading, as its name implies, provides no explicit advice for
inspectors as to how to proceed, or what specifically to look for during the reading activity. Hence,
inspectors must resort to their own intuition and experience to determine how to go about finding defects
in a software document. Checklists offer stronger support mainly in the form of yes/no-questions that
inspectors have to answer while reading a software document. Gilb and Grahams’ manuscript on
software inspection states that checklist questions interpret specified rules within a project or an
organization [30]. Such rules may be, for example, development standards.

Although the checklist-based approach offers more reading support than ad-hoc, it has four principal
shortcomings. The first derives from the fact that a checklist is often based upon past defect information
[10]. If no such information is available, the checklist questions are often taken from the literature, which
is a kind of reuse of defect experience of the organization that created the checklist. In both cases,
inspectors do not pay attention to defects and defect types that were not previously detected and,
therefore, may miss some defects or whole classes of defects. Second, a checklist often contains too
many questions, and it is rare to find concrete instructions on how to answer a particular one. Therefore, it
is often unclear for an inspector when and based on what information he or she is to answer the
guestions. The lack of concrete guidance for answering the questions is linked with the third shortcoming:
a checklist does not require an inspector to document his or her analysis. Thus, the result of the analysis
effort is not repeatable by others and depends heavily on the individual inspector. Finally, a checklist
requires each inspector to check all information in the inspected document for possible defects, which
may cause him or her to get swamped with many unnecessary details [65].

A more recent approach, scenario-based reading [3], has been proposed to tackle some of these
deficiencies. The basic idea of scenario-based reading techniques is the use of so-called scenarios that
describe how to go about finding the required information in a software artefact, as well as what that
information should look like.

% Both of these figures assume that the defect detection life cycle prior to the introduction of inspections consisted only of testing
activities.

4 In this article, we model the inspection process in terms of its main activities. This allows us to be independent from a specific
inspection implementation, such as the Fagan [24] or the Gilb [30] one.

® Other types of support can also be effective. For example, training sessions in program comprehension as presented in [71] can
be beneficial to maximise the number of detected defects in code inspection.

v39 -01/9/99 2

Empirical evidence suggests that scenario-based reading techniques are valuable for defect detection in
requirements documents [2][67][68]. However, no systematic empirical investigation has been performed
to evaluate these reading techniques in the context of code inspections. This is of particular practical
importance since a recent literature survey found that in many companies the use of software inspection
for code artefacts predominates [53]. Moreover, existing empirical evaluations have focused mainly on
the effectiveness of a scenario-based reading technique. They often provide very little evidence nor
discussion on the cost of using a particular technique. However, the knowledge about the cost is a major
factor influencing the adoption of a technique in practice.

In this paper we focus on one particular scenario-based reading technique, namely perspective-based
reading (PBR). After describing the details of the PBR technique for code documents, we present a quasi-
experiment and two internal replications conducted with 60 Erofessional programmers at Bosch Telecom
GmbH, Germany. During these studies, the effectiveness” of PBR and its cost per defect ratio are
compared with those of CBR. Briefly, our results indicate that inspection teams applying PBR have a
higher effectiveness and a lower cost per defect ratio than those applying CBR. From a methodological
point of view, we found quasi-experimentation beneficial since it provides a path to follow for performing
more empirical studies within industrial settings.

The paper is organised as follows. Section 2 describes in more detail the investigated reading techniques,
the research questions, and the experimental hypotheses. Section 3 presents the quasi-experiment and
its two replications. This includes a discussion of the experimental design, a description of the
environment and the subjects, the dependent and independent variables, how the studies were
conducted, and the data analysis methods. Section 4 follows with a presentation of the experimental
results and their interpretation. Section 5 discusses the threats to internal and external validity. Finally,
Section 6 concludes with a summary and directions for future work.

2 Background

This section presents an overview of existing reading techniques for software inspection as well as the
hypotheses that we test in our experiment. An explanation of the mechanisms underlying these
hypotheses is presented in Appendix A (see Section 9).

2.1 Evaluating Software Inspections

The fundamental rationale underlying software inspection is to detect defects in a software document
before these defects propagate to subsequent development phases where their detection costs escalate.
Furthermore, the cheaper it is to find defects during inspections, the greater the cost savings from the
implementation of inspections [5]. It is therefore important to maximise the number of defects detected
through inspections, and to minimise the costs of detecting those defects.

We focus our evaluations on two important aspects of software inspections in this paper: their
effectiveness and their cost’. Effectiveness is defined as the proportion of defects in the document that
were found during inspections. Cost is defined in terms of the effort to find a single defect. Effort is the
most important factor in determining the cost of a software inspection. We also consider the cost per
defect found for two phases of an inspection separately: individual defect detection and defect collection
in a meeting.

2.2 Two Inspector Inspections

Our focus is two inspector inspections. This means that two persons independently scrutinized the
software artifact for defects before the inspection meeting takes place. This does not necessarily imply a
limit to the overall inspection team size since other people may be involved in the inspection process,

6
In this study effectiveness is defined as the proportion of all defects in the code that were found by applying one reading technique.

Another evaluative criterion of software inspections is their interval (i.e., calendar time elapsed) [85]. However, this is not
addressed in the current study.

v39 -01/9/99 3

such as an independent moderator. However, the quality of the inspection process as well as the quality
of the artifact after inspection is primarily determined by those people who scrutinize the artifact for
defects (i.e., the inspectors).

Involving only two inspectors is in line with suggestions in Fagan’s original work on software inspection
[24]. He states that four people (i.e., the inspection moderator, the author, and two inspectors) constitute
a good-sized inspection team, although circumstances may dictate otherwise. Such circumstances may
be, for example, that a requirements document is inspected instead of a code artifact. Since the
requirements cannot be checked against a preceding specification, a requirements inspection often
involves more inspectors than other inspection types [27]. Furthermore, inspections are sometimes
performed to promote a team spirit, transfer of skills and facilitate on-the-job training [22]. In such cases it
may be desirable to have a larger inspection team.

There is already some quantitative evidence from academic environments that a two-person inspection
team decreases inspection cost while maintaining inspection effectiveness [4][51]. For code inspections
empirical evidence suggests that adding inspectors does not necessarily pay-off in terms of more
detected defects. In a controlled experiment, Porter et al. [66] investigated 1, 2, and 4 inspector
inspections. They found little difference in the inspection effectiveness of 2 and 4 inspectors. However,
both were significantly more effective than 1 inspector inspections. Further, in practice, it is common that
inspections are performed by a small team [24][30].

2.3 Reading Techniques for Defect Detection in Software Inspection

In addition to ad-hoc and CBR, a number of other reading techniques have been proposed in the
literature. These are briefly reviewed below.

Reading by Stepwise Abstraction is a technique that requires a more rigorous examination of the software
artefact than either ad-hoc or Checklists do [23][56]. Its use has often been described in the context of the
Cleanroom Software Development Method because Cleanroom offers a set of formally described
development artefacts that are particularly suited for this reading technique.

Scenario-based reading techniques [3] extend the work of Parnas and Weiss on Active Design Reviews
[65] and allocate specific responsibilities to inspectors. In addition, scenario-based reading techniques
provide guidance for inspectors in the form of so-called scenarios on what to check and how to perform
the required checks. A scenario typically consists of a limited, specific set of questions and a detailed set
of instructions for an inspector about how to perform the checking.

Thus far, researchers have suggested three different scenario-based reading techniques: Defect-based
Reading [67], a scenario-based reading technique based on function points [9], and Perspective-based
Reading [2].

Porter et al. [67] describe defect-based reading scenarios. These scenarios are derived from defect
classes and consist of a specific set of questions an inspector has to answer while reading a
requirements document. The scenario questions focus on the detection of defects belonging to a
particular defect class. Some experiments with students as subjects found that subjects using the defect-
based reading technique detect more defects in requirements documents than subjects applying either
ad-hoc or CBR [67][60], and similarly with professional subjects [68].8

Cheng and Jeffery [9] base the development of scenarios on Function Point Analysis (FPA). FPA defines
a software system in terms of specific function point elements, such as inputs, files, inquiries, and
outputs. A function point scenario consists of questions about a specific function point element. The
researchers carried out an experiment with students as subjects to compare the function point scenario
approach to ad-hoc reading for defect detection in requirements documents. The experimental results
show that, on average, subjects following the ad-hoc approach found more defects than subjects

©

Two other student experiments did not confirm the superior defect detection capability of defect-based reading [28][75]. However,
for these experiments the authors noted that the subjects lacked domain experience and “had to learn too many new things” at the
same time, and this may have had an impact on the results. A meta-analysis of the 5 cited DBR experiments [36] did find that the
combined p-value was less then 0.05 and that the combined effect size was in the direction favouring DBR. However, the
estimated standard deviation for this effect size was quite large.

v39 -01/9/99 4

following the function-point scenarios did. However, the authors assert that experience was a
confounding factor that biased the results of this experiment.

Basili et al. [2] present perspective-based reading scenarios. A perspective-based reading scenario
supports the checking of a document from a particular stakeholder's perspective. In a way, the PBR
technique synthesises ideas that have already appeared in previous articles on software inspection, but
have never been worked out in detail. For example, Fagan [24] reports that a piece of code should be
inspected by its real tester, while Fowler [24] suggests that each inspection participant should take a
particular point of view when examining the work product. Finally, Graden et al. [32] state that inspectors
must identify any required functional responsibility they assume in inspecting a document. That is, each
inspector must denote the perspective (customer, requirements, design, test, maintenance) from which
they have evaluated a document.

A perspective-based reading scenario consists of activities an inspector is to perform to extract
information from the inspected document and questions to analyse the extracted information. In the
context of a controlled experiment at NASA [2], the researchers compared the PBR approach to a specific
NASA reading approach, which evolved over several years. They found that for some requirements
documents, individual subjects using the PBR technique have been more effective at defect detection in
requirements documents than subjects using the NASA reading approach. Moreover, they simulated
team meetings and found the PBR approach superior to the NASA approach.

The review of the literature above indicates that there is initial empirical evidence demonstrating the utility
of defect-based reading and perspective-based reading. However, this evidence has been limited to
requirements documents. Given that most companies focus their inspection activities on code documents
(see the literature review in [53]), it would be of practical importance to evaluate these reading techniques
for inspecting code documents as well.

In contrast to the other two scenario-based reading techniques, the PBR technique has been tailored for
defect detection in code artefacts and applied in the context of a software development project at a
German company [54]. However, a systematic comparison with CBR is still missing.

2.4 Experimental Hypotheses

Before we explain the expected effects when comparing PBR with CBR in the form of hypotheses, we
define the following notation (we use d(a|b) for defining d(a) or d(b) respectively).

Term Definition

e(CBR|PBR) Theindividual defect detection effort for inspector i
when using (CBR|PBR).

m (CBR|PBR) The meeting effort after the individual inspectors used
(CBRIPBR).

D (CBR|PBR) The total number of unique defects found by two
inspectors using (CBR|PBR)

Table 1: Notation.

We use this terminology to define our expectations. The rationale for these expectations is presented in
Appendix A (see Section 9).

1. The Effectiveness of PBR is Larger than the Effectiveness of CBR for Teams.
Given the anticipated defect detection benefits of PBR, then we would expect the following to hold
within a given experiment:

D(CBR) < D(PBR) Eqn. 1
2. Defect Detection Cost for Teams is Lower with PBR than with CBR.

The PBR technique requires an inspector to perform certain activities based on the content of the

v39 -01/9/99 5

inspected document and to actively work with the document instead of passively scanning through it.
Moreover, individual inspectors have to document some intermediate results, such as a call graph, a
description of the function, or some test cases. It is therefore expected that an inspector will spend at
least as much effort for defect detection using PBR than CBR:

e (PBR) ¢ e (CBR) Eqn. 2
The effect that we anticipate is:

D(PBR) _ &(PBR) +&,(PBR) Eqn. 3
D(CBR) €(CBR) +&,(CBR)

which states that the increase in detected defects must be larger than the additional effort spent for
defect detection using PBR. In this case, the total cost to detect a defect using CBR will be higher
than for PBR.

3. Meeting Cost for Teams is Lower with PBR than with CBR.
Performing these extra activities during PBR is expected to result in a better understanding of the
document. Therefore, during the meeting, inspectors do not have to spend a lot of extra effort in
explaining the defects that they found to their counterpart in the team. Furthermore, it will take less
effort to resolve false positives due to the enhanced understanding. The better understanding is
expected to translate to an overall reduction in meeting effort for PBR than for CBR:®

m(CBR) > m(PBR) Eqn. 4

It follows from Eqn. 1 and Egn. 4:
m(CBR) _ m(PBR)
D(CBR) D(PBR)

Egn. 5

Therefore, one would hypothesise that the meeting cost for PBR will be less than for CBR.

4. Overall Inspection Cost is Lower with PBR than with CBR.
Following from the above two arguments about the cost per defect for defect detection and for the
meeting, we would expect that the overall cost per defect for both phases to be smaller for PBR than
for CBR.

Based on the above explanation of the expected effects, below we state our four null hypotheses:

° One can argue that more time could be taken during the meeting for an inspector to understand the other perspective and
understanding aspects of the code not demanded by his/her own perspective. This could result in a greater meeting time for PBR
than for CBR. However, in such a case one would expect inspectors to share the abstractions that they have constructed during
their individual reading, making it easier for an inspector to comprehend the reasoning behind the other perspective’s defects. For
CBR such abstractions are not available.

v39 -01/9/99 6

Ho1 An inspection team is as effective or more effective using CBR than it is using PBR.

Ho2 An inspection team using PBR finds defects at the same or higher cost per defect than a
team using CBR for the defect detection phase of the inspection.

Hos An inspection team using PBR finds defects at the same or higher cost per defect as a team
using CBR for the meeting phase of the inspection.

Hos4 An inspection team using PBR finds defects at the same or higher cost per defect than a
team using CBR for all phases of the inspection.

3 Research Method

3.1 Implementation of Reading Techniques at Bosch Telecom GmbH
3.1.1 Checklist-based Reading

The CBR approach attempts to increase inspection effectiveness and decrease the cost per defect by
focusing the attention of inspectors on a defined set of questions. In our study, we provided the inspectors
with a generic checklist. We limited the number of checklist items to 27 questions to fit on one page since
this is recommended in the literature [10]. We structured the checklist according to the schema that is
presented in [10]. The schema consists of two components: “Where to look” and “How to detect”. The first
component is a list of potential “problem spots” that may appear in the work product and the second
component is a list of hints on how to identify a defect in the case of each problem spot. As problem spots
we considered data usage (i.e., data declaration and data referencing), computation, comparison, control
flow, interface, and memory. For each problem spot, we derived the checklist items from existing
checklists such as [63], and books about the C Programming language [21][47]. Hence, the problem
spots as well as the questions help reveal defects typical in the context of software development with the
C programming language. Figure 1 presents an excerpt from the checklist.

Item no. Where to | ook How to detect

1 Data declaration Areall variables declared before being used?

2 If variables are not declared in the code module, will it be sure that
these variables are global ones?

3 Arethe types of variables correct?

Data referencing Are variables referenced that have no value (i.e., which have not

been initialised)?
Aretheindices of arrays within the specific boundaries?

6 Areall constants used correctly?

Figure 1: Example Questions of the Checklist.

3.1.2 Perspective-Based Reading

The basic idea behind the PBR approach is to inspect an artefact from the perspectives of its individual
stakeholders. Since different stakeholders are interested in different quality factors or see the same
quality factor quite differently [59], a software artefact needs to be inspected from each stakeholder’s
viewpoint. The basic goal of inspectors applying the PBR technique is therefore to examine the various
documents of a software product from the perspectives of the product’'s various stakeholders for the
purpose of identifying defects.

For probing the documents from a particular perspective, the PBR technique provides guidance for an
inspector in the form of a PBR scenario on how to read and examine the document. A scenario is an

v39 -01/9/99 7

algorithmic guideline on how inspectors ought to proceed while reading the documentation of a software
product, such as the code of a function.

As depicted in Figure 2, a scenario consists of three major sections: introduction, instructions, and
guestions. This scenario structure is similar to the one described in the existing formulation of PBR for
requirements documents [2].

PBR Scenario
Introduction explaining the stakeholder’sinterestsin the
artefact
} Instructions on extracting the information relevant for
examination
1.7 } Questions answered while following the instructions
2.7

Figure 2: Content and Structure of a PBR Scenatrio.

The introduction describes a stakeholder's interest in the product and may explain the quality
requirements most relevant for this perspective.

The instructions describe what kind of documents an inspector is to use, how to read the documents, and
how to extract the appropriate information from them. While identifying, reading, and extracting
information, inspectors may already detect some defects. However, an inspector is to follow the
instructions for three reasons. First, instructions help an inspector decompose large documents into
smaller parts. This is crucial because people cannot easily understand large documents. Understanding
involves the assignment of meaning to a particular document or parts of it and is a necessary prerequisite
for detecting more subtle defects, which are often the expensive ones to remove if detected in later
development phases. In cognitive science, this process of understanding is often characterised as the
construction of a mental model that represents the objects and semantic relations in a document [84].
Second, the instructions require an inspector to actively work with the documents. This ensures that an
inspector is well prepared for the following inspection activities, such as the inspection meeting. Finally,
the attention of an inspector is focused on the set of information that is relevant for one particular
stakeholder. The particular focus avoids the swamping of inspectors with unnecessary details.

Once an inspector has achieved an understanding of the artefact, he or she can examine and judge
whether the artefact as described fulfils the required quality factors. For making this judgement, a set of
guestions focus the attention of an inspector to specific aspects of the artefact, which can be competently
answered because of the attained understanding.

3.1.3 Development of a Scenario

Since the success of the PBR technique relies on the ability of software engineers not only to follow
existing PBR scenarios but to create new ones, we briefly describe the process of how to derive the
scenarios. This process is based on an article that describes how to tailor the PBR technique to the
inspection of object-oriented development artefacts [52]:

1. The first process step is to identify the documents that contain pertinent information about a particular
software product. The term "software product” refers not only to the final delivered software system
but also to subsystems or even functions. It is possible to identify the documents of a particular
product with the help of a product or process model since these models define the documents that
must be created as part of the development process.

2. The second step is to specify the various stakeholders that have a vested interest in the product
under inspection. As a starting point, the scenario developer may look at stakeholders that have a
particular role in the software development process. These roles may be the producer of a preceding
document (if existing), the producer of a subsequent document (if existing), the tester, and the

v39 -01/9/99 8

maintainer. The user of the product as well as domain experts may be helpful as well. Each of these
represents a different (technical) perspective on the inspected product. If a particular document is not
of interest to any stakeholder, its value to the overall software development process is questionable.

3. For each of the perspectives, the person that develops the scenario (i.e., the scenario developer)
identifies what document and what kind of information in the document is most important for a
particular stakeholder (e.g., to perform his or her role in the software development process), how to
identify this kind of information, and how to extract it. For this, the scenario developer may interview
the different stakeholders.

4. The scenario developer sets up the introductory part of the scenario by describing the interests of a
stakeholder. Then, he or she develops instructions about how to identify and extract the required
information. The granularity should have enough detail for an inspector to follow the given instructions
step by step. Furthermore, it is important to somehow make inspectors document the extracted
information (e.g., marking them with a coloured pen or writing parts of the information down). This
captures what information the inspector has checked, for possible repetition at a later stage.

5. The fifth and final step in defining a scenario is to set up the questions an inspector is to answer
based on the extracted information and the understanding of the product he or she has achieved.
Characteristics of typical problems in a particular environment, exemplified by defect distributions, are
useful information for developing the questions since they are often typical representatives of
problems in an environment. However, only those questions are to be included in a scenario that an
inspector can answer with the understanding he or she can achieve based on the extracted
information.

This process describes in a generic manner how to identify perspectives and how to create an initial set
of scenarios. The motivation for such a process comes from the need of practitioners to integrate new
stakeholders or tailor the PBR technique to the inspection of different products. The scenarios crafted
according to the process above are generic in the sense that they can be reused for the inspections of the
same kind of document within or even across projects. In practice, scenarios are rarely if ever defined
completely from scratch, but are typically adapted from previous scenarios based on the experience
gained from applying them. In this sense, the scenarios in this paper represent a starting point for others
to tailor them to their particular needs and environment.

3.1.4 Perspective-based Reading of Code Modules

In the context of our study, the products that are inspected are functions of a software system. The
description of a function, that is, the physical inspected document, consists of its implementation in the C-
programming language as well as of an operational description in the specification document.

Following the process that is outlined in [52], we identified two perspectives for the inspection of code
documents at Bosch Telecom GmbH: A code analyst perspective and a tester perspective. In short, the
code analyst's main interests are whether the code implements the right functionality while the tester
checks whether the functionality was implemented right. For each perspective, we developed one
scenario, which we provide in Appendix B and Appendix C according to the stated process. Both
scenarios are generic, meaning that we did not tailor them in a particular manner to the application
domain of Bosch Telecom GmbH.

An inspector reading the code document from a code analyst perspective identifies the different functions
in the code module and extracts for each function a description of the functionality. This description can
be compared to the specification and deviations are considered potential candidates for defects. For the
extraction, he or she uses an abstraction procedure that is similar to the one suggested in Harlan Mill’s
reading technique “Reading by Stepwise Abstraction” [56].

An inspector reading the code module from the perspective of a tester identifies the different functions
and tries to set up test cases with which he or she can ensure the correct behaviour of each function.
Then, the inspector is supposed to mentally simulate each function using the test cases as input values
and to compare the resulting output with the specification. Any deviation pinpoints potential defects.

v39 -01/9/99 9

Apart from the instructions that describe each activity in more detail, each scenario includes some
guestions that help focus the attention of inspectors on specific issues. In contrast to a checklist, the
number of questions is limited and can be answered based on the results of the activities.

An inspection team consists of inspectors each of which has read the document from a different angle.
The two perspective approach represents a minimal set of viewpoints with which we try to achieve high
defect coverage. If some defects remain undetected we may include a third inspector that reads a code
module from a different perspective. A primary candidate is the perspective of a maintainer. This derives
from the fact that Votta reports that most of the issues found in a code inspection are so called soft
maintenance issues [86]. Although these defects do not affect the functional behaviour of the software,
their correction helps prevent code decay, which pays off later on.

3.2 Experimental Design

Our study was conducted as part of a large training course on software inspection within Bosch Telecom
GmbH. We ran the initial quasi-experiment, and then replicated it twice (we refer to each one of these as
a “run”). In each run we had 20 subjects, giving a total of 60 subjects who took part in the original quasi-
experiment and its two replications. Each of the original quasi-experiment and its two replications took 6
days. Therefore the full study lasted 18 days.

In this section we describe the rationale behind the quasi-experimental design that we have employed,
and the alternatives considered. In particular, since we make causal interpretations of the results, we
discuss the potential weaknesses of a quasi-experiment and how we have addressed them.

To prelude the discussion of the experimental design, we emphasise that experimental design is,
according to Hays [35], a problem in economics. Each choice that one makes for a design has its price.
For example, the more treatments, subjects, and number of hypotheses one considers, the more costly
an experiment is likely to be. This is particularly true for field experiments. Therefore, the objective is to
choose a design that minimises the threats to validity within the prevailing cost constraints.

3.2.1 Description of the Environment

Bosch Telecom GmbH is a major player in the telecommunication market and develops high quality
telecommunication systems (e.g., modern transmission systems based on SDH technology, access
networks, switching systems) containing embedded software. One major task of the embedded software
is the management of these systems. In the transmission systems and access network this comprises
alarm management, configuration management, performance management, on-line software download,
and on-line database down- and up- load. There are four typical characteristics for this kind of software.
First, it is event triggered. Second, there are real time requirements. Third, the software must be highly
reliable which basically means that the software system must be available 24 hours. Finally, the
developed software system must be tailorable to different hardware configurations. Because of these
characteristics and the ever increasing competition in the telecommunications market, high product
quality is one of the most crucial demands for software development projects at Bosch Telecom GmbH.

Although reviews are performed at various stages of the development process to ensure that the quality
goals are met, a large percentage of defects in the software system are actually found throughout the
integration testing phase. A more detailed analysis of these defects revealed that many (typically one
half) have their origin in the implemented code. Since defects detected in the integration testing phase
are expensive (estimate: 5000 DM per detected and fixed defect), several departments at Bosch Telecom
GmbH decided to introduce code inspections to detect these defects earlier and, thus, save detection as
well as correction cost.™

1% |n this environment, code inspections are expected to reduce detection and correction costs for the following reasons. First, the
integration test requires considerable effort just to set up the test environment. A particular test run consumes several hours or
days. Once a failure is observed this process is stopped and the setup needs to be repeated after the correction. So, if some
defects are removed beforehand, the effort for some of these cycles is saved (defect detection effort). Second, once a failure is
observed it usually consumes considerable effort to locate or isolate the defect that led to the failure. In a code inspection, a defect
can be located immediately. Hence, code inspection helps save correction cost (assuming that the effort for isolating defects is
part of the defect correction effort).

v39 -01/9/99 10

Part of the effort to introduce code inspections was a code inspection training course for the software
developers. We organised this as a quasi-experiment and two internal replications. This quasi-
experimental organisation is advantageous for both participants and researchers. The participants not
only learnt how software inspection works in theory but also practised them using a checklist as well as a
PBR scenario for defect detection. In fact, the practical exercises offered the developers the possibility to
convince themselves that software inspection helps improve the quality of code artefacts and, therefore,
are beneficial in the context of their own software development projects. In a sense, these exercises help
overcome the “not applicable here (NAH)” syndrome [43] often observed in software development
organisations, and alleviated many objections against software inspections on the developers’ behalf.
From a researcher’s perspective, the training effort offered the possibility to collect inspection data in a
guasi-controlled manner.

3.2.2 Subjects

All subjects in our study were professional software developers of a particular business unit at Bosch
Telecom GmbH. Each developer within this unit was to be trained in inspection and, thus, participated in
this study. In order to capture their experiences we used a debriefing questionnaire. We captured the
subjects’ experience in the C-Programming language and in the application domain on a six-point scale
as the most prevalent types of experience that may impact a subject’s performance. Figure 3 shows
boxplots of subjects’ C-programming and application domain experiences.

very experienced

experienced =

rather experienced o

rather inexperienced

inexperienced

Min-Max
[25%-75%

very inexperienced .
C-Programming Application Domain o Median value

Figure 3 : Subjects’ experience with the C-programming language and the application domain.

We found that subjects perceived themselves experienced with respect to the programming language
(median of 5 on the 6 item scale) and rather experienced regarding software development in the
application domain (median of 4 on the six item scale).

We can consider our subject pool a representative sample of the population of professional software
developers. Because of cost and company constraints many empirical studies on software inspection
were performed with students, that is, novices as subjects. Although these studies provide valuable
insights, they are limited in the sense that the findings cannot be easily generalised to a broader context.
As Curtis points out [18], generalisations of empirical results can only be made if the study population are
professional software engineers rather than novices, and it has been forcefully emphasised that the
characteristics of professional engineers differ substantially from student subjects [19]. The few existing
results in the context of empirical software engineering support this statement since differences between
professional software developers and novices were found to be qualitative as well as quantitative [89].
This means that expert and novice software developers have different problem solving processes causing
experts not only to perform tasks better, but also to perform them in a different manner than novices.
Hence, in the absence of a body of studies that find the same results with experts and novice subjects,
such as the one presented by Porter and Votta [68], generalisations between the two groups are
guestionable and more studies with professional software developers as subjects are required.

v39 -01/9/99 11

3.2.3 Experimentation in an Industrial Setting

Experiments conducted in industrial settings with humans almost always have professional engineers as
subjects. This is in contrast with “laboratory” experiments whereby university students are usually the
subjects. However, working with professional engineers entails additional constraints on the design of an
experiment. In our particular context, three constraints were important influences on the design:

Inability to Withhold Treatment. Since our study was performed in the context of training, each subject
had to learn and apply both reading techniques. It has been noted that withholding treatment may
contribute to demotivation and subsequent confounding of the treatment effects. This immediately
suggests a repeated-measures design“. Even though it is dictated by the study constraints, a repeated-
measures design has certain additional advantages over a between-subjects design. Repeated-measures
designs have higher statistical power. This is because there will almost always be a positive correlation
between the treatments [46]. Previous empirical studies of different aspects of developer performance
have found that individual performance differences can vary from 4:1 to 25:1 across experienced
developers with equivalent backgrounds [7]. The high subject variability can easily mask each treatment
effect that is imposed on the subjects in an experiment. This has caused some methodology writers to
strongly recommend repeated-measures designs since subjects effectively serve as their own control [7].
Repeated-measures designs enable a direct and unconfounded comparison between the different
treatments [46]. Finally, repeated-measures designs have an economical advantage in that less subjects
are required compared to a between-subjects design to attain the same statistical power levels [57].

No Control Group. The validity of the concept of a “no-treatment” control group in software engineering
research has been questioned [48]. This is because it is not clear what a “no-treatment” group is actually
doing. A suggested alleviation of this in an industrial setting is that the “no-treatment” group performs the
reading technique that they usually employ in their practice. Indeed, this was the approach followed in a
previous study on reading techniques with professional engineers at NASA/GSFC [2]. In the context of
our study the organisation did not perform any specific code reading prior to the training, only what can be
characterised as informal individual desk checks. It would not have been possible to request that 60
engineers perform desk checks as part of the experiment due to the consequent substantial cost increase
of the experiment. Therefore, we only compare the two reading techniques: CBR and PBR. This implies
that it is impossible to determine whether either or both of the reading techniques are better than current
practice. From a general scientific knowledge perspective this issue is not of concern since the questions
being answered concern the relative performance of the two reading techniques. For the company that
was involved, performance of the two reading techniques compared to the “usual” technique was not
deemed sufficiently important for the required investment. There is justification for this position in that the
literature has consistently demonstrated that formalised reviews, that is, software inspection, to be better
than no reviews [5] or walkthroughs [62].

Natural Assemblage of Groups. For logistical reasons, training could only be done in groups of 10
subjects. Therefore, for each of the original quasi-experiment and the two replications we had two groups
of 10 subjects each. This group size seemed reasonable in that it would have been difficult within the time
frame of the study to schedule the same 3 consecutive days for more than 10 subjects. The individuals
that formed each group were therefore not randomly assigned to groups, and multiple unknown selection
factors outside our control determined the make up of each group. Certainly, availability and schedule
conflicts played a role. Typically, random assignment can be regarded as a method of experimental
control because it is assumed that over large numbers of subjects uncontrolled factors are distributed
evenly over the treatment conditions [87]. Since random assignment of subjects to groups is the defining
contrast between true experiments and quasi-experiments [16] or observational studies [12], this qualifies
our study as a quasi-experiment. Quasi-experiments attempt to preserve as many of the properties of true
experimentation as possible given the constraints of the industrial research setting [80]12.

1 . . .
In a repeated-measures design, subjects receive two or more treatments.

12 Campbell and Stanley point out that even in well-controlled true experiments, there are often nonrandom nuisance variables
inherent to the experimental design that cannot be controlled [8]. Empirical support for this position can be found in [38].

v39 -01/9/99 12

3.2.4 Counterbalancing

A danger with repeated-measures designs is the existence of a carry-over effect [33]. A carry-over effect
can occur in two ways: practice effects and sequence effects. With the former, treatment effects are
confounded with practice. In our context, practice can occur because the subjects had not used a
systematic reading technique in the past. Therefore, it is plausible that with the second treatment they will
exhibit better performance than the first because they had practice with a reading technique in the first
treatment, irrespective of what the reading technique was.

When confronted with a sequence effect, the effect of the first treatment persists and thus contaminates
the measurements on the second treatment. In a previous experimental evaluation of reading techniques
the authors noted that applying a prescriptive reading technique before a “usual” reading technique can
lead to carry-over effects [2]. This is because the subjects would not be able to completely stop using the
prescriptive technique. Since in our context one can argue that both techniques are prescriptive, this
caution would not be as applicable, although one technique is more prescriptive than the other.

However, as will be noted in the post-hoc analysis section of this paper, the subjects perceived that CBR
is easier to use than PBR. This means that if CBR is followed by PBR, the subjects may revert to the
easier CBR when they are supposed to be using PBR, raising the danger of a carry-over effect. However,
since PBR requires the construction of explicit abstractions, we can check that subjects in a CBR® PBR
ordering actually use PBR by checking the abstractions that were constructed. In our study, no
CBR® PBR contamination was found. If PBR is followed by CBR then there is likely to be less of a
conformance problem since CBR is less prescriptive and the subjects found it easier.

To err on the conservative side, and also to address the potential dangers of practice effects, we used a
counterbalanced repeated-measures design. With counterbalancing both combinations by which
treatments can be ordered are used. The 2 groups in an experimental run were randomly assigned to one
of the two sequences. The effect of counterbalancing is to spread the unwanted variance arising from the
treatment by practice or sequence interaction amongst the different treatments.

Furthermore, an explicit test for carry-over effects is conducted during our analysis to check if any such
effects persisted despite the counterbalancing.

3.2.5 The 2x2 Factorial Counterbalanced Repeated-Measures Design

Our final experimental design is depicted in Table 2. We use a notational system in which X stands for a
treatment and O stands for an observation; subscripts 1 through n refer to the sequential order of
implementing treatment or of recording observations within an experimental run. The horizontal sequence
indicates the different treatments. Therefore, for the original quasi-experiment, the subjects were split in
two groups. The first group (Group 1) performed a reading exercise using PBR first, and then measures
were collected (O,). Subsequently they performed a reading exercise using CBR, and again measures
were collected (O,). The second group (Group 2) performed the treatments the other way round. The
vertical sequence indicates elapsed time during the whole study. Therefore, the first replication was
executed with groups 3 and 4 after groups 1 and 2 and the second replication was run with groups 5 and
6 after groups 3 and 4.

v39 -01/9/99 13

Original Quasi-Experiment

GrOUp 1 Xper/Module 1 O; Xcer/Module 2 O,

GrOUp 2 Xcer/Module 1 O3 Xper/Module 2 (O

First Replication

Group 3 Xper/Module 3 O Xcer/Module 4 0,
Group 4 Xcer/Module 3 O, Xper/Module 4 Oy
Second Replication

Group 5 Xper/Module 5 O Xcer/Module 6 0,
Group 6 Xcer/Module 5 O, Xper/Module 6 (O

Table 2: Design of the Quasi-Experiment and its two Replications.

Below we discuss a number of issues related to this design and its execution:

Different Code Modules Within a Run. Given that each group performs two reading exercises using
different reading techniques, it is not possible for a group to read the same code modules twice,
otherwise they would remember the defects that they found during the first reading, hence invalidating the
results of the second reading. Therefore, a group reads different code modules each time. Within a run, a
module was used once with each reading technique so as not to confound the reading technique
completely with the module that is used.

Different Code Modules Across Runs. During each of the quasi-experiment and its two replications
different pairs of code modules were used. Since there was considerable elapsed time between each run,
it was thought that past subjects may communicate with prospective subjects about the modules that
were part of the training. By using different code modules, this problem is considerably alleviated.

Confounding. In this design the interaction between the module and the reading technique is
confounded with the group main effect. This means that the interaction cannot be estimated separately
from the group effect. However, it has been argued in the past that this interaction is not important
because all modules come from the same application domain, which is the application domain that the
subjects work in [2][83].

Effect of Intact Groups. As noted earlier, the groups in our study were intact (i.e., they were not formed
randomly). The particular situation where there is an inability to assign subjects to groups randomly in a
counterbalanced design was discussed by Campbell and Stanley [8]. In this design there is the danger
that the group interaction with say practice effects confounds the treatment effect. However, if we only
interpret a significant treatment effect as meaningful if it is not due to one group, then such a confounding
would have to occur on different occasions in all groups in turn, which is a highly unlikely scenario [8].
Furthermore, it is noted that if there are sufficient intact groups and if they are assigned to the sequences
at random, then the quasi-experiment would become a true experiment [8], which is also echoed by
Spector [80]. This last point would argue for pooling the original quasi-experiment and its replications into
one large experiment. However, it is known that pooling data from different studies can mask even strong
effects [79][90], making it much preferable to combine the results through a meta-analysis [50]. A meta-
analysis allows explicit testing of homogeneity of the groups. Homogeneity refers to the question whether
the different groups share a common effect size. If homogeneity is ensured, one can combine the results
to come up with an overall conclusion. Otherwise, the results must be treated separate from each other.
An explicit test for homogeneity is conducted during our analysis to check if effect size estimates exhibit

v39 -01/9/99 14

greater variability than would be expected if their corresponding effect size parameters were identical
[37].

Replication to Alleviate Low Power. Ideally, researchers should perform a power analysis13 before
conducting a study to ensure that their experimental design will find a statistically significant effect if one
exists. However, in our case, such an a priori power analysis was difficult because the effect size is
unknown. As mentioned earlier, there have been no previous studies that compared CBR with PBR for
code documents, and therefore it was not possible to use prior effect sizes as a basis for a Power
analysis. We therefore defined a medium effect size, that is an effect size of at least 0.5 [13],l as a
reasonable expectation given the claimed potential benefits of PBR. Moreover, we set an alpha level of
a=0.1. Usually, the commonly accepted practice is to set a=0.05". However, in order to control Type |
error (a) and Type Il error (b) requires either rather large effects sizes or rather large sample sizes. This
represents a dilemma in a software engineering context since much treatment effectiveness research in
this area involves relatively modest effects sizes, and in general, small sample sizes. As pointed out in
[57], if neither effect size nor sample size can be increased to maintain a low risk of error, the only
remaining strategy — other than abandoning the research altogether — is to permit higher risk of error. This
explains why we used a more relaxed alpha level for our studies..

With the anticipation of 10x2 inspector teams and an a=0.1, t-test power curves [49][57] for a one-tailed
significance test'® indicated that the experimental design has about a 0.3 probability of detecting, at least,
a medium effect size. This was deemed to be a small probability of rejecting the null hypotheses if they
were false (Cohen [13] recommends a value of 0.8). While this power level was not based on observed
effect sizes, it already indicated potential problems in doing a single quasi-experiment without
replications. After the performance of the quasi-experiment, we found for several hypotheses that the
difference between CBR and PBR was not statistically significant. One potential reason for insignificant
findings is low power. Using the obtained effect size from the quasi-experiment, an a posteriori power
analysis was performed for all four hypotheses. Table 3 presents the a posteriori power levels.

The power of a statistical test of a null hypothesis is the probability that it will lead to the rejection of the null hypothesis, i.e., the
probability that it will result in the conclusion that the investigated phenomenon exists [13]. Statistical power analysis exploits the
relationship among the following four variables involved in statistical inference:

Power: The statistical power of a significance test is the probability of rejecting a false null-hypothesis.
Significance level a: the risk of mistakenly rejecting the null-hypothesis and thus the risk of committing a Type | error.
Sample size: the number of subjects/teams participating in the experiment.

Effect size: the discrepancy between the null hypothesis and the alternate hypothesis. According to Cohen [13] effect size
means “the degree to which the phenomenon is present in the population”, or “the degree to which the null hypothesis is
false. In a sense, the effect size is an indicator of the strength of the relationship under study. It takes the value zero
when the null hypothesis is true and some other nonzero value when the null hypothesis is false. In our context, for
example, an effect size of 0.5 between the defect detection effectiveness of CBR inspectors and PBR inspectors would
indicate a difference of 0.5 standard deviation units.

Ideally, in planning a study, power analysis can be used to select a sample size that will ensure a specified degree of power to
detect an effect of a particular size at some specified alpha level.

“ In the allied discipline of MIS, Cohen'’s guidelines for interpreting effect sizes [13] have also been suggested in the context of
meta-analysis [41].

!5 It is conventional to use an a level of 0.05. Cowles and Davis [17] trace this convention to the turn of the century, but credit
Fisher for adopting this and setting the trend. However, some authors note that the choice of an a level is arbitrary [39][29], and it
is clear that null hypothesis testing at fixed alpha levels is controversial [15][82]. More relevant for our endeavours, it is noted that
typical statistical texts provide critical value tables for a=0.1 [77][78], indicating that this choice of a level is appropriate in some
instances. As we explain in the text, our choice of a level was driven by power considerations.

®* We used one-side hypothesis tests since we seek a directional difference between the two reading techniques.

v39 -01/9/99 15

H 1 H 2 H 3 H 4
Quasi-Experiment >0.9 0.49 >0.9 0.69
1¥ Replication 0.51 0.71 0.84 0.81
2" Replication 0.84 0.28 0.76 0.49

Table 3: A Posteriori Power Analysis Results.

It is seen that low power was a potent|ally strong contributor for not finding statistical significance, making
it difficult to interpret these results.” One possibility to tackle the problem of low power is to replicate an
empirical study and merge the results of the studies using meta-analysis techniques. Meta-analysis
techniques have been primarily designed to combine results from a series of studies, each of which had
insufficient statistical power to reliably accept or reject the null hypothesis. This is the approach we have
adopted and hence the prevalent reason for performing the two replications.

Replications to Increase Generalisability of Results. Replication of experimental studies provides a
basis for confirming the results of the original experiment [20]. However, replications can also be useful
for generalising results. A framework that distinguishes between close and differentiated replications has
been suggested to explain the benefits of replication in terms of generalising results [69]. Our two
replications can be considered as close replications since they were performed by the same investigators,
using the same design and reading artefacts, under the same conditions, within the same organisation,
and during the same period of time. However, there were also some differences that facilitate
generalisation of the results. First, the subjects were different. Therefore, if consistent results are obtained
in the replications we can claim that the results hold across subjects at Bosch Telecom GmbH. Second,
the modules were varied. Again, if consistent results are obtained then we can claim that they are
applicable across different code modules at Bosch Telecom GmbH. By varying these two elements in the
replications, one attempts to find out if the same results occur despite these differences [69]

Process Conformance. It is plausible that subjects do not perform the CBR and PBR reading techniques
but revert to their usual technique that they use in everyday practice. This may occur, for example, if they
are faced with familiar documents (i.e., documents from their own application domain within their own
organisation) [83]. This is particularly an issue given that the subjects are professional software engineers
who do have everyday practices. As alluded to earlier, with PBR it is possible to check this explicitly by
examining the intermediate artefacts that are turned in. We did, and determined that the subjects did
perform PBR as defined. For CBR, it will be seen in the post-hoc analysis section of the paper that more
subjects found CBR easier to use for defect detection than their current reading technique (ad-hoc);
actually more than double. Given such a discrepancy, it is unlikely that the subjects will revert to a
technique that is harder to use when offered CBR. Therefore, we expect process conformance when
using CBR to also be hlgh It has also been suggested that subjects, when faced with time pressure,
may revert to using techniques that they are more familiar with rather than make the effort of using a new
technique [83]. During the conduct of the quasi-experiment and its replications, there were no time limits.
That is, the subjects were given as much time as required for defect detection using each of the reading
techniques. Therefore, this would not have affected the application of the reading techniques.
Furthermore, when conducting analyses using defect detection cost, time limits would not invalidate
conclusions drawn since there was no artificial ceiling on effort.

Feedback Between Treatments. The subjects did not receive feedback about how well they were
performing after the first treatment. This alleviates some of the problems that may be introduced due to

7

Not finding a statistically significant result using a low power study does not actually tell us very much because the inability to
reject the null hypothesis may be due to the low power. A high power study that does not reject the null hypothesis has more
credibility in its findings.

8 As noted in [69], however, this entails a gamble since if the results do differ in the replications, then one would not know which of
the two elements that were changed are the culprit.

19 In [83] it is suggested that subjects could be asked to cross-reference the defects that they find with the specific steps of the
reading technique. This would allow more detailed checking of process conformance. However, this would have added to the
effort of the subjects, and it is unknown in what ways this additional activity would affect the effort when using CBR and PBR. If
such an effect does occur differently for CBR and PBR, then it would contaminate the effort data that we collected.

v39 -01/9/99 16

learning [83]. If subjects do not receive feedback then they are less likely to continue applying the
practices they learned during the first treatment. However, we found it very important to provide feedback
at the end of each run.

Trainer Effects. For the quasi-experiment and its two replications, the same trainer was used. This
trainer had given the same course before to multiple organisations, and therefore the quasi-experiment
was not the first time that this course was given by the same person. Consequently, we expect no
differences across the studies due to different trainers, nor due to the trainer improving dramatically in
delivering the material.”®

3.2.6 An Alternative Design

In educational settings, it frequently occurs that treatments are assigned to intact classes, and where the
unit of analysis is the individual student (or teams) within the classes. This situation is akin to our current
study whereby we have intact groups. In such situations one can explicitly take into account the fact that
subjects are nested within groups and to employ a hierarchical design, and hence pool all the data into
one larger experiment [80]. One can proceed by first testing if there are significant differences amongst
groups. If there is group equivalence within treatments, then one can analyse the data as if they were not
nested. However, if there were group differences, the unit of analysis would have to be the group and the
analysis performed on that basis. This creates a difficulty in that reverting to a group unit of analysis
would substantially reduce the degrees of freedom in the analysis. Hence, it would be harder to find any
statistically significant effects even if such differences existed. Given the potential for this considerable
methodological disadvantage, we opted a priori not to pool the results and rather perform a meta-
analysis.

3.3 Experimental Materials

In each group the subjects inspected two different code modules. Apart from a code module, an inspector
received a specification document which can be regarded as a type of requirements document for the
expected functionality and which is considered defect free. All code modules were part of running
software systems of Bosch Telecom GmbH and, thus, can be considered almost defect free. Table 4
shows the size of a code module in Lines of Code (without blank lines), their average cyclomatic
complexity using McCabe’s complexity measure [58], and the number of defects we considered in the
analysis.

Size(LOC) Average Cycl. Number of defects
Complexity

Code Module 1 375 6.67

Code Module 2 627 11.00 9

Code Module 3 666 3.20 10

Code Module 4 915 4.38 16

Code Module 5 375 3.29 11

Code Module 6 627 5.44 11

Table 4: Characteristics of Code Modules.

3.4 Measurement
3.4.1 Dependent Variables

In this quasi-experiment we investigated four dependent variables: Team defect detection effectiveness
and the cost per defect with three different definitions. Team defect detection effectiveness refers to the
number of defects reported by a two-person inspection team (without defects found in the meeting). As

2 Although, of course, an experienced trainer is still expected to improve as more courses were given; this is inevitable. However,
their impact would be minimal.

v39 -01/9/99 17

the different code modules included a different number of defects we had to normalise the detected
number of defects. We did this by dividing the number of detected defects by the total number of defects
that is known. Hence, the dependent variable “team defect detection effectiveness” can be defined in the
following manner:

Defects found by a two - person team
Team defect detection effectiveness = Ean. 6
Total number of defects in the code module an.

The cost per defect for teams is defined in three different ways depending on which phases of the
inspection process are taken into account. The first definition relates the defect detection cost to the
number of defects found by a two-person inspection team. The second one relates the meeting cost to
the number of defects found by a two-person inspection team. And the third relates the sum of the defect
detection cost and the meeting cost to the number of defects found by a two-person inspection team.
Hence, the three instances of the dependent variable “cost per defect for teams” can be defined in the
following manner:

Defect detection effort of two subjects
Cost per defect for the defect detection phase= Eqn_ 7

Defects found by a two - person team (without meeting gains)

Meeting effort of two subjects
Cost per defect for the meetinge phase= Eqn 8

Defects found by a two - person team (without meeting gains)

Detection effort + Meeting effort
Cost per defect for the overall inspection = Ean. 9
Defects found by a two - person team (without meeting gains) an.

Below we address some issues related to the counting of the number of defects found:

Effects of Seeding Defects. We asked either the author or a very experienced software developer (if the
author participated in a runZl) to inject defects into the code modules. Hence, one person injected defects
for the code modules that were used in either the quasi-experiment or one of its replications. These
defects should be typical for the ones that are usually detected in testing and should not be detectable
automatically by compilers or other tools, such as lint. There might be little bias since one person may
insert defects that are easier or more difficult to detect than the ones inserted by another person. This
bias may explain differences in the defect detection effectiveness and the cost per defect across the
guasi-experiment and its replications. However, we only evaluate the difference between the two reading
techniques within a study. This bias, therefore, does not have an impact on the individual study results.
Furthermore, the tests of homogeneity that were performed (see below) indicate that there were no
differences in team performance across the three studies.

Defect Reporting. In some cases the subjects reported more defects on their defect report forms than
were seeded in a code module. When a true defect was reported that was not on the list of seeded
defects, we added this defect to the list of known defects and reanalysed the defect report forms of all the
remaining subjects. Whether a defect was a true defect was our decision (to some extent based on
discussions with the author or the person who seeded defects).

Meeting Gains and Losses. For the evaluation of our hypotheses, data was collected after applying
each reading technique and after the team meetings. The data collected after the team meetings may be
distorted by meeting gains and losses, which are independent of the reading technique used. We found
very little meeting gains and meeting losses. We excluded meeting gains from the team results. The
meeting losses were sufficiently minor that this issue was ignored in the analysis.

2 Authors participated in a run in two cases. For these two modules, the authors had not worked on them for at least one year.
Furthermore, they did not know what defects were injected. Therefore, the authors’ inclusion in the study would incur minimal
contamination, if any.

v39 -01/9/99 18

3.4.2 Independent Variables
We controlled two independent variables in the quasi-experiment and its replications:
1. Reading technique (CBR versus PBR)

2. Order of reading (CBR ® PBR versus PBR ® CBR).
3.5 Execution

The quasi-experiment and its two replications were performed between March and July 1998. Each
consisted of two sessions and each session lasted 2.5 days and was conducted in the following manner
(see Table 5). On the first day of each session, we did an intensive exercise introducing the principles of
software inspection. Depending on the reading order, we then explained in detail either CBR or PBR. This
explanation covered the theory behind the different reading approaches as well as how to apply them in
the context of a code module from Bosch Telecom GmbH. Then, the subjects used the explained reading
approach for individual defect detection in a code module. Regarding the PBR technique, the subjects
either used the code analyst scenario or the tester scenario but not both. While inspecting a code module,
the subjects were asked to log all detected defects on a defect report form. After the reading exercise we
asked the subjects to fill out a debriefing questionnaire. The same procedure was used on the second
day for the reading approach not applied on the first day. After the reading exercises, we described how
to perform inspection meetings. To provide the participants with more insight into an inspection meeting,
we randomly assigned two subjects to an inspection team and let them perform two inspection meetings
(one for each code module) in which they could discuss the defects found in the two reading exercises.
Of course, we ensured that within each of these teams one participant read a code module from the
perspective of a code analyst and one read the code module from the perspective of a tester. The
inspection team was asked to log all defects upon which both agreed. We then did an initial analysis by
checking all defects that were either reported from individual subjects or from the teams, against the
known defect list and presented the results on the third day (half-day). We consider the presentation of
initial results a very important issue because, first, it gives experimenters the chance to get quick
feedback on the results and, second, the participants have the possibility to see and interpret their own
data, which motivates further data collection. At the end of each training session, each participant was
given a debriefing questionnaire in which we asked the participant about the effectiveness and efficiency
of inspections and the subjects’ opinion about the training session.

Day 1 Day 2 Day 3
Morning Afternoon Morning Afternoon Morning
Group x Introduction PBR CBR Explanation | Team Meetings Feedback on
of Inspection Explanation for Module A Results
Principles Defect Detection and
Defect Detection with CBR Module B
with PBR (Module (Module B)
A)
Groupy Introduction CBR PBR Explanation | Team Meetings Feedback on
of Inspection Explanation for Module A Results
Principles Defect Detection and
Defect Detection with PBR (Module Module B
with CBR (Module B)
A)

Table 5: Execution of the Quasi-Experiment and its Replications.

v39 -01/9/99 19

3.6 Data Analysis Methods
3.6.1 Analysis Strategy

To understand how the different treatments affected individual and team results across the quasi-
experiment and its replications, we started the data analysis by calculating some descriptive statistics of
the individual and team results. We continued testing the stated hypotheses using a t-test for repeated
measures, i.e., a matched-pair t-test [1]. The t-test allowed us to investigate whether a difference in the
defect detection effectiveness or the cost per defect ratio is due to chance. Although the t-test is robust
against violation of certain assumptions (i.e., the normalityz2 and homogeneity of the data), we also
performed the Wilcoxon signed ranks test [78], which is the non-parametric counterpart of the matched-
pair t-test. The Wilcoxon signed rank test corroborated the findings of the t-test in all cases. Hence, we do
not present the detailed results of this test. We run the statistical tests for the quasi-experiment and the
two replications separately.

Our experimental design permits the possibility of carry-over effects. Grizzle [34] points out that when
there are carry-over effects from treatment 1 to treatment 2, it is impossible to estimate or test the
significance of any change in performance from Period 1 and Period 2 over and beyond carry-over
effects. In that situation, the only legitimate follow-up test is an assessment of the differences between the
effects of the two treatments using Period 1 data only. Hence, it is recommended that investigators first
test for carry-over effects. Only if this test is not significant, even at a very relaxed level, is a further
analysis of the total data set appropriate. In that case, all the obtained data may properly be used in
separate tests of significance for treatments. The description of the specific approach for testing for carry-
over effects is provided in Appendix D (see Section 12).

One goal of any empirical work is to produce a single reliable conclusion, which is, at first glance, difficult
if the results of several studies are divergent or not statistically significant in each case. Close replication
and replication in general, therefore, raises questions concerning how to combine the obtained results
with each other and with the results of the original study. Meta-analysis techniques can be used to merge
study results. Meta-analysis refers to the statistical analysis of a collection of analysis results from
individual studies for the purpose of integrating the findings.

Although meta-analysis allows the combination and aggregation of scientific results, there has been some
criticism about its use [31]. The main critical points include diversity, design, publication bias, and
dependence of studies. Diversity refers to the fact that logical conclusions cannot be drawn by comparing
and aggregating empirical results that include different measuring techniques, definitions of variables, and
subjects because they are too dissimilar. Design means that results of a meta-analysis cannot be
interpreted because results from "poorly" designed studies are included along with results from "good"
designed studies. Publication bias refers to the fact that published research is biased in favour of
significant findings because non-significant findings are rarely published. This in turn leads to biased
meta-analysis results. Finally, dependence of the studies means that meta-analyses are conducted on
large data sets in which multiple results are derived from the same study.

Diversity, design, and publication bias do not play a role in our case. However, we need to discuss the
issue of study dependency in more detail. It has been remarked that experiments using common
experimental materials exhibit strong inter-correlations regarding the variables involving the materials.
Such correlations result in non-independent studies [61]. In general, Rosenthal [72] discusses issues of
non-independence in meta-analysis for studies performed by the same laboratory or research group,
which is our case since we have two internal replications. He presents an example from research on
interpersonal expectancy effects demonstrating that combining all studies across laboratories and
combining studies where the unit of analysis is the laboratory results in negligible differences. Hence, in
practice, combining studies from the same laboratory or research group is not perceived to be
problematic.

22
Before starting the analysis, we performed the Shapiro-Wilks' W test of normality, which is the preferred test of normality

because of its good power properties [81]. In all cases we could not reject the null hypothesis that our data were normally
distributed.

v39 -01/9/99 20

Another legitimate question is whether it is appropriate to perform a meta-analysis with a small meta-
sample (in our case a meta-sample of three studies). It has been noted that there is nothing that
precludes the application of meta-analytic techniques on a small meta-sample [50] “Meta-analyses can be
done with as few as two studies or with as many studies as are located. In general, the procedures are
the same [...] having only a few studies should not be of great concern”. For instance, Kramer and
Rosenthal [50] report on a meta-analysis of only two studies evaluating the efficacy of a vaccination to
SIV in monkeys using data from Cohen [14]. In the realm of software engineering, meta-analyses have
also tended to have small meta-samples. For example, Hayes [36] performs a meta-analysis of five
experiments evaluating DBR techniques in the context of software inspections. Miller [61] performs a
meta-analysis of four experiments comparing defect detection techniques.

3.6.2 Comparing and Combining Results using Meta-Analysis Techniques

Meta-analysis is a set of statistical procedures designed to accumulate empirical results across studies
that address the same or a related set of research questions [88]. As pointed out by Rosenthal [72] there
are two major ways to merge and subsequently evaluate empirical findings in meta-analysis - in terms of
their statistical significance (e.g., p-levels) and in terms of their effect sizes (e.g., the difference between
means divided by the common standard deviation). One reason for the importance of the effect size is
that many statistical tests, such as the t-test, can be broken down mathematically in the following two
components [74]:

Significance test = Effect Size x Size of study

This relationship reveals that the result of a significance test, such as the t-test, is determined by the
effect size and the size of the study. Many researchers however only make decision based on the fact of
whether the result of applying a particular test is statistically significant. They often do not take the effect
size or the size of the study into consideration. This almost exclusive reliance of researchers on results of
null hypothesis significance testing alone has been heavily criticised in other disciplines, such as
psychology and the social sciences [15][73][76]. We therefore explicitly take the effect size into
consideration during the meta-analysis.

Two major meta-analytic processes can be applied to the set of studies to be evaluated: Comparing and
combining [73]. When studies are compared as to their significance levels or their effect sizes, we want to
know whether they differ significantly among themselves with respect to significance levels or effect sizes,
respectively. This is referred to as homogeneity. When studies are combined, we want to know how to
estimate the overall level of significance and the average effect size, respectively. In most cases,
researchers performing meta-analysis, first, compare the studies to determine their homogeneity. This is
particularly important in a software engineering context since, there, empirical studies are often
heterogeneous [6][60]. Once it is shown that the studies are, in fact, homogeneous the researchers
continue with a combination of results. Otherwise, they look for reasons that cause variations. According
to this procedure, we first compared and combined p-values and, second, compared and combined effect
sizes of the team results. We limited the meta-analysis to the team results since these are of our primary
interest.

Comparing and Combining p-Values

For comparing the p-values, we followed a procedure that is described by Rosenthal [73]: Given the three
p-levels of our studies to compare, we find the standard normal deviate Z corresponding to each p-level.
The Z's will have the same sign if all studies show effects in the same direction. They will have different
signs if the results are not in the same direction. The statistical significance of the heterogeneity of the Z's
(and the p’s associated with the Z's) can be obtained by first calculating:

_0 S\2
cZ_a(zj-z) Eqgn. 10

v39 -01/9/99 21

which is distributed as € * with k-1 degrees of freedom [88]. In this equation Z; is the Z for any one study

and Z is the mean of all the Z's obtained. A significant C % tells us that the Z’s we have tested for
homogeneity differ significantly among themselves. Assuming we do have homogeneity, we can combine
the p-values. Perhaps the most widely used meta-analysis procedure to combine p-values is that of
Fisher [26]. It is a method to combine the statistical test results of different experiments that validated the
same hypothesis. The Fisher combined test is based on the product of probabilities of the statistical tests.
If the natural logarithms of these probabilities are calculated, multiplied by minus two (-2), and then
summed, a statistic with degrees of freedom equal to two times the number of combined tests (2k) is
obtained. The test procedure becomes:

Reject the null hypothesis for combined tests if

k

, o
P=-2"Qq Inp; 2 C Egn. 11

i=1

where the critical value C is obtained from the upper tail of the c % -distribution with 2k degrees of
freedom.

Comparing and Combining Effect Sizes

Before we can start to compare and combine the effect sizes of our quasi-experiment and our
replications, we need to define a measure for the effect size. Which effect size measure to choose is
unimportant since there are simple equations to transform one effect size measure to another [73]. In our
case, we decided to use Hedges g [37] as our measure of effect size. Hedges g is defined as follows:

XpBR = XcBR

9=— < Eqn. 12

where Xpgg and X g are the respective treatment means and s is the pooled sample standard deviation:
2 2
o= |Seer *Scer Eqn. 13
2

Hedges and Olkin [37] report that g has a small sample bias. However, it is easy to remove this bias by
defining an unbiased estimator d for the effect size:

PBR)_(CBR 9’ J(N _ 2)
S

d=

('Dmal

Eqgn. 14

A table of J(N-2) is presented in [37]. We used a J(N-2)-value of 0.8882 in the calculations for the quasi-
experiment and a J(N-2)-value of 0.9027 in the calculations for the two replications. Hedges and Olkin
also present an approximation of J(N-2), which is defined as follows:

v39 -01/9/99 22

IN- 2) @g’[

m;} Egn. 15

In addition to the small sample bias, one has to consider that our quasi-experiment is a “within-subject”
design meaning that the two samples being compared are not independent of each other. As a
consequence, the t-test is based on a sampling error estimate or “error term” that is reduced in proportion
to the strength of the correlation rpgricr between the paired values [57]. In fact, for paired samples the
denominator of effect size is not s, the pooled standard deviation, but

S” yJ1- regricer

Eqgn. 16
This formula can be used to produce the effect size for paired observations as follows:

& x -X
d:QM JN- 2) Eqn. 17

8 V1- l'egricer g

Before pooling the estimates of effect size from a series of k studies, it is important to determine whether
the studies can reasonably be described as sharing a common effect size. A statistical test for the
homogeneity of effect sizes is formally a test of the hypotheses that all the effect sizes of the studies are
the same versus the alternative hypothesis that at least one of the effect sizes differs from the remainder.

Hedges and Olkin [37] present a test statistic Q for testing this hypothesis. The test statistic is defined in
the following manner:
.2 e

%ﬁk di 9 9 Eqgn. 18
oud O 9§ 52(d)5 *
AWy cmt 1 6+

g LI
gg_ls CHES

with the estimated variance of d;defined as:
8+d?
4N

8§%(dy) = Eqn. 19

If all studies have the same population effect size (i.e., the null hypothesis is true) then the test statistic Q
has an asymptotic ?2-distribution with k-1 degrees of freedom. If the value of Q exceeds the 100(1-a)-

percent critical value of the ?2-distribution with k-1 degrees of freedom, we reject the hypothesis that the

effect sizes are homogeneous and decide not to pool the effect size estlmates If we cannot reject this
null hypothesis, we can pool the effect size by calculating the mean effect size.?

2 It should be noted that previous meta-analyses in software engineering with equivalently small meta-samples did detect
heterogeneity [36][61].

v39 -01/9/99 23

The final question that needs to be addressed is whether the effect size can be considered practically
significant, that is, whether the effect is large enough to be of interest. Cohen [13] reported that across a
wide sampling of behavioural science research, effects of around 0.8 were at the large end of the range
of what has been found, 0.5 was about medium, and 0.2 was at the small end of the range. In the
absence of adequate effect size ranges in a software engineering context, we consider effect sizes of
d 3 0.5 to be of practical significance.

4 Results

In this section we present the detailed results. Note that all t-values and effect sizes have been calculated

to be consistent with the direction: Xpgg = Xgg -

4.1 Defect Detection Effectiveness
Figure 4 shows boxplots of the teams’ defect detection effectiveness.

nd
Quasi-Experiment N Repatn 2" Replicaion

1 1 10 1
=9 =9 T =) 110 110

08 08 08
07 07 5 07

=

T MeansSD T MeansSD T leanssd
Mean-SD Vean-SD Wean-SD
] MeantSE [MeansSE 7 MeamSE

Mean-SE Mean-SE Nean-SE
CBR PR o Mean CBR PBR o Mean CBR PER U lean

Team Defect Detecglmn Effectiveness
Team Defect Detecton Effeciveness
Team Defect Detection Effectiveness

Reading Technique Reading Technique Reading Technique

Figure 4: Box-Plots of the Team Defect Detection Effectiveness.

The boxplots show that the inspection teams detected on average between 58% and 78% of the defects
in a code module. These percentages are in line with the ones reported in the literature [30]. Teams using
PBR for defect detection had a slightly higher team defect detection effectiveness than the same teams
using CBR. In addition to the effectiveness difference, the boxplots illustrate that PBR teams exhibit less
variability than CBR teams. The lower variability for PBR may be explained by the fact that the more
prescriptive approach for defect detection to some extent removes the effects of human factors on the
results. Hence, all the PBR teams achieved similar scores. However, before providing further explanation
of these results, we need to check whether the difference between CBR and PBR is due to chance.

We first assessed whether there is a carry-over effect for the team effectiveness. The results, which we
summarised in Appendix F, indicate no carry-over effect. Therefore we can proceed with the analysis of
the data from the two periods.

We investigated whether the difference among teams is due to chance. Table 6 presents the summary of
the results of the matched-pair t-test for the team defect detection effectiveness.

2 For one team in the quasi-experiment, one member of one team dropped out of the study. Therefore we have only nine teams for
the analysis.

v39 -01/9/99 24

t-value df p-value (one-sided)
Quasi-Experiment 3.09 8 0.007
1% Replication 1.37 9 0.10
2" Replication 2.39 9 0.02

Table 6: t-Test Results of the Team Defect Detection Effectiveness.

Taking an alpha level of a = 0.1 we can reject Hy, for the quasi-experiment and the 2" replication. We
cannot reject hypothesis Ho, for the 1% replication. The findings suggest a treatment effect in two out of
three cases, which is not due to chance.

At this point we need to decide whether there is an overall treatment effect across studies. Therefore, we
performed a meta-analysis as described previously to compare and combine the results. We put the data
for performing the calculations in Appendix E. The test for homogeneity for p-values results in p=0.7.
Hence, we cannot reject the null hypothesis that our p-values are homogeneous. This means that we can
combine the p-values of the three studies according to Fisher’'s procedure in the following manner:

k
P=-2"§ Inp, =22.14
i=1

Based on the C *-distribution, this value of P results in a p-value of p=0.000016. Hence we can reject the

null hypothesis and conclude that the resulting combination of the quasi-experiment and its replications
revealed that a team using the PBR technique for defect detection had a significantly higher defect
detection effectiveness than the team using CBR.

We continued the analysis by looking at the effect sizes. Table 7 reveals the effect sizes of the three
studies.

S pooled Hedges g d
Quasi-Experiment 0.16 0.79 1.46
1% Replication 0.21 0.42 0.81
2" Replication 0.14 1.06 0.97

Table 7: Effect Sizes of the Team Defect Detection Effectiveness.

Table 7 shows that the 1% replication has the lowest effect size, which explains why the results of the test
were not statistically significant. To compare and combine the effect sizes, we first checked the effect size
homogeneity by calculating Q. The calculated value of Q is Q = 0.91 which leads to a p-value of p=0.63.
Hence, we cannot reject the null hypothesis that the effect sizes are homogeneous. The combination of
the effect sizes reveals a mean effect size value of 1.08. This represents a large effect size, i.e., one
would really become aware of a difference in the team defect detection effectiveness between the use of
PBR and CBR. Based on our findings, we therefore can reject hypothesis Ho;.

For three of the modules in our study all defects were detected using PBR. For the other three all defects
except one were detected. No discernible pattern in terms of the types of defects that were not detected
could be identified.

4.2 Cost per Defect for the Defect Detection Phase

Before looking at the team results, we first investigated how much effort each subject consumed for
defect detection using either of the techniques and whether there is a difference. Table 8 depicts the
average effort in minutes that a subject spent for defect detection using either CBR or PBR and the
results of the matched-pair t-test.

v39 -01/9/99 25

CBR PBR p-values (one sided)
Quasi-Experiment 115.2 145.6 0.0003
1% Replication 118.8 132.5 0.16
2" Replication 168 150.5 0.13

Table 8: Average Effort per Subject for the Defect Detection Phase.

We found that in the quasi-experiment and the 1% replication, the subjects consumed less effort for CBR
than for PBR. However, only in the first case the difference was statistically significant. This finding seems
to indicate that if there is a significant difference PBR seems to require more effort on the inspector’s
behalf. The question is whether the extra effort is justified in terms of more detected and documented
defects in the team meeting.

Figure 5 depicts boxplots of the cost per defect ratio of both inspectors on an inspection team.

asi Experiment R
QuasExpe 1" Repiicaion 2 Replcation

) : 100

n=10

0 n=10

wl. o ™ of o - o = % =
i %l 50 : D |) . %l
a- : L 4 o e e 40

s i e . %I =
0 e .
0 Ce e L o T s o 10 T 50 Dev

O 8. En [5. Em.
CBR PER o Mean CBR PBR B Mean

Cost per Defect (Defect Detection) [minutes/defect]
15

o} c e T +50.Dev.
- : O +Su.En.
CBR PBR 8 Mean

Cost per Defect (Defect Detection) [minutes/defect]

Cost per Defect (Defect Detection) [minutes per defect]

Reading Technique Reading Technique Reading Technique

Figure 5: Box-Plots of the Cost per Defect Ratio for the Defect Detection Phase.

Figure 5 reveals that on average an inspection team consumed between 28 and 60.5 minutes per defect.
The average cost per defect of PBR teams is consistently lower than the cost per defect of CBR teams. In
this case, there is also less variability in the cost per defect ratio of PBR teams. Based on these findings,
the extra effort for PBR, if any, seems to be justified because PBR teams have a better cost per defect
ratio than CBR teams.

A formal test for carry-over effects was conducted, and none were identified. The test results are
summarised in Appendix F.

t-value df p-value (one-sided)
Quasi-Experiment -1.33 8 0.11
1% Replication -1.93 9 0.04
2" Replication -0.75 9 0.23

Table 9: t-Test Results of the Cost per Defect Ratio for the Defect Detection Phase.

Table 9 shows the t-test results for the cost per defect during the defect detection phase. Taking a = 0.1
we can reject Ho, for the 1* replication. We cannot reject hypothesis Ho, for the quasi-experiment and the
2" replication.

v39 -01/9/99 26

To compare and combine the results we first performed the homogeneity check for p-values. This value
with 2 degrees of freedom results in a p-value of p=0.77. Hence, we cannot reject the hypothesis that our
p-values are homogeneous. This finding allowed us to combine the p-values of the three studies.
Calculating the combination of the p-values according to Fisher's procedure results in:

k
P=-2" § Inp, = 13.57
i=1

Based on the C ?-distribution, this value of P results in a p-value of p=0.001. Hence we can reject the

hypothesis Ho, and conclude that the resulting combination of the quasi-experiment and its replications
revealed that a team using the PBR technique for defect detection had a significantly lower defect
detection cost per defect than the team using CBR.

We continued the analysis by looking at the effect sizes. Table 10 reveals the effect sizes of the three
studies.

S pooled Hedges g d
Quasi-Experiment 24.03 -0.50 -0.72
1% Replication 22.59 -0.87 -0.78
2" Replication 12.59 -0.33 -0.30

Table 10: Effect Sizes of the Cost per Defect Ratio for the Defect Detection Phase.

Table 10 shows that the quasi-experiment and 2" replication have the lowest effect size, which explains
why the results of these tests were not statistically significant. To compare and combine the effect sizes,
we first checked the effect size homogeneity by calculating Q. The calculated value of Q is Q = 0.64
which leads to a p-value of p=0.73. Hence, we cannot reject the hypothesis that the effect sizes are
homogenous. The combination of the effect sizes gives a mean effect size value of 0.6. Considering our
effect size threshold of 0.5, we can conclude that we have, in fact, found an effect of practical
significance.

We therefore can reject hypothesis Ho.

4.3 Cost per Defect for the Meeting Phase

We subsequently consider the cost per defect when accounting for the meeting phase. Figure 6 shows
the boxplots for the quasi-experiment and its replications.

Quasi-Experiment
u 11
n=9

1™ Replcation 2" Replication

n=10

10 10

n=10

Cost per Defect (Meeting) [minutes/defect]
o . o w s o e o~ o ©
Cost per Defect (Meeting) [minutes/defect]
Cost per Defect (Meeting) [minutes/defect]

e S

n=9
T 510, De. T 45t Dev. T st Dev.

[= [sst.Em. 3 sstd.En.

CaR PBR o Mean CBR PBR o Mean CBR PBR o Mean

9
8
7
6
5
4
3
2
1
0

Reading Technique Reading Technique Reading Technique

Figure 6: Box-Plots of the Cost per Defect for the Meeting Phase.

v39 -01/9/99 27

Figure 6 reveals that the average cost per defect ratio of PBR was lower than the CBR one when only
considering the effort of the meeting phase. Although there seems to be less variability for the 1%
replication, there does not seem to be as much differences in the variability for the quasi-experiment and
the 2™ replication. Overall, this result indicates that the meeting cost per defect is higher for CBR than for
PBR.

The results of a formal test for carry-over effects did not indicate any carry-over-effects, and is
summarised in Appendix F.

t-value df p-value (one-sided)
Quasi-Experiment -5.20 8 0.0004
1% Replication -2.05 9 0.035
2" Replication -2.55 9 0.016

Table 11: t-Test Results of the Cost per Defect Ratio for the Meeting Phase.

Taking a = 0.1 we can reject Hos for all three studies. The findings suggest a treatment effect in all three
cases, which is not due to chance.

We calculated é (ZJ- - 2)2 = 1.396. This value with 2 degrees of freedom results in a p-value of p=0.50.

Hence, we cannot reject the null hypothesis that our p-values are homogeneous. Calculating the
combination of the p-values according to Fisher’s procedure results in:

k
P=-2" § Inp, = 30.59
i=1

Based on the C *-distribution, this value of P results in a p-value of p<0.00001. Hence we can reject the

hypothesis Hoz and conclude that the resulting combination of the quasi-experiment and its replications
revealed that a team using PBR for defect detection had a significantly lower cost per defect for the
meeting phase than the team using CBR.

We continued the analysis by looking at the effect sizes. Table 12 reveals the effect sizes of the three
studies.

S pooled Hedges g d
Quasi-Experiment 1.80 -1.64 -2.17
1% Replication 2.99 -0.85 -1.06
2" Replication 1.65 -0.87 -0.86

Table 12: Effect Sizes of the Cost per Defect Ratio for the Meeting Phase.

Table 12 shows that the 1 replication has the lowest effect size. However, the effect size is large enough
for the test results to be statistically significant. To compare and combine the effect sizes, we first
checked the effect size homogeneity by calculating Q. The calculated value of Q is Q = 3.23 which leads
to a p-value of 0.20. Hence, we cannot reject the null hypothesis that the effect sizes are homogeneous.
The combination of the effect sizes gives a mean effect size value of 1.36. This represents a large effect
size considering our effect size threshold of 0.5.

It was postulated that the increased effort and, thus, the higher cost per defect ratio for subjects using
PBR lead to an increased understanding of the documents. We therefore investigated the subjects’
perceptions of understanding the documents using both reading techniques. The debriefing questionnaire
contained a question asking the subjects how well they understood the inspected code artefact using

v39 -01/9/99 28

either CBR or PBR. Figure 7 presents a histogram of the results of this question from the quasi-
experiment and its replications. There is a clear trend confirming our expectation that using a PBR
scenario for defect detection improves a subject’s understanding of the inspected code artefact.

A .. helps improve my understanding of the code.

25

Number of Subjects

strongly disagree §§
rather disagree R\
N\
rather agree NN\
strongly agree
strongly disagree
disagree
. N
rather disagree P\
N
rather agree .
strongly agree A\

Q
3
]
o
=
e

P

o
a

Scenario

Figure 7: Histogram of Subject’'s Understanding of the Inspected Code Modules.

The above results tell a consistent story. Using PBR scenarios requires individual subjects to spend more
effort for defect detection. Although this results in a higher checking rate, the cost per defect ratio of
subjects using PBR for defect detection is acutally lower than for subjects using CBR. But the higher
preparation effort together with the procedural support lead to an increased understanding of the
inspected code module. This is then expected to lead to inspectors who can easily explain the defect that
they found to their counterpart on the inspection team. Furthermore, it will take less effort to resolve false
positives due to this enhanced understanding of the document. These would lead to less cost per defect
for PBR teams when compared with CBR teams, which is the result that we obtained above.

We therefore can reject hypothesis Hos.
4.4 Cost per Defect for the Overall Inspection

We now consider the cost per defect results for the whole of the inspection. Figure 8 shows boxplots of
the overall cost per defect.

Quasi-Experiment 1% Repicaton 2" Replcaion

S

n=9 .
110 —T RERI . m

100 S L : 100 o 0

n=10

n=10

. . . ISR
o0) _ %l

) P P T 450.0ev.

40 _

=

1 e S . T 5. Dev.

Cost per Defect (Overal Inspection) [minutes/defect]
Cost per Defect (Overall Inspection) [minutes/defect]

Cost per Defect (Overall Insy

1 T s Den.
0 [48 E. O ssu.En. . [1S En.
CBR PBR 0 Mean CBR PR 0 Mean CBR PR 0 Nean

Reading Technique Reading Technique Reading Technique

Figure 8: Box-Plots of the Overall Cost per Defect.

v39 -01/9/99 29

When looking at the overall cost per defect, the boxplots are consistent with the ones presented
previously. PBR seems to have a lower cost per defect ratio and less variability than CBR. This result is
consistent across all three studies. Hence, the extra effort that individual subjects spent using a PBR
scenario is justified because in this case the inspection team reports more defects. We also observed
less variability in the costs per defect when a team used a scenario for defect detection than a checklist,
which may be due to the reduction of the influence of individual characteristics.

A test for carry-over effects was performed, and the results did not indicate any. The test results are
summarised in Appendix F.

Table 13 presents the results of the matched-pair t-test for the cost per defect for teams for the overall
inspection process.

t-value df p-value (one-sided)
Quasi-Experiment -1.86 8 0.05
1% Replication -2.35 9 0.02
2" Replication -1.32 9 0.11

Table 13: t-Test Results of the Cost per Defect for the Overall Inspection.

Taking a = 0.1 we can reject Hy, for the quasi-experiment and the 1% replication. We cannot reject Ho, for
the 2™ replication.

We performed a meta-analysis as described previously and calculated é (ZJ- - 2)2 = 0.32. This value with

2 degrees of freedom results in p=0.85. Calculating the combination of the p-values according to Fisher’s
procedure results in:

k
P=-2"§ Inp; = 18.08
i=1

Based on the C °-distribution, this value of P results in a p-value of p=0.00012, which is statistically

significant at an a = 0.1 level. We can, therefore, reject the hypothesis Hqos when looking at all three
studies. The pooled result of the quasi experiment and its replications revealed that a team using the PBR
technique for defect detection had a significantly lower cost per defect ratio than the team using CBR.

Table 14 shows the effect sizes of the three studies. It can be seen that, in fact, the 2™ replication has the
lowest effect size value. The low effect size for the 2™ replication explains why the result of the statistical
test turned out to be not statistically significant.

S pooled Hedges g d
Quasi-Experiment 26.83 -0.67 -1.01
1% Replication 24.88 -0.97 -0.97
2" Replication 13.81 -0.51 -0.54

Table 14: Effect Sizes of the Cost per Defect Ratio for the Overall Inspection.

For comparing and combining the effect sizes, we first checked the effect size homogeneity by calculating
Q. The calculated value of Q is Q = 0.64 which leads to a p-value of p=0.73. Hence, we cannot reject the
hypothesis that the effect sizes are homogeneous. This result allows us to combine the effect sizes. The
combination of the effect size gives a value of 0.84. Considering our effect size threshold of 0.5, we can
conclude that we have, in fact, found an effect of practical significance.

v39 -01/9/99 30

Given that the results for each of the individual phases, defect detection and meeting, point in the same
direction, it is not surprising that cost per defect for PBR is lower than CBR for the whole of the inspection
process. We can therefore reject hypothesis Ho,.

4.5 Post-Hoc Analysis

We performed a post-hoc analysis to evaluate subjects’ perceptions of ease of use of CBR and PBR. The
rationale was to determine whether subjects are likely to revert back to using PBR if they apply CBR after
PBR. If they find that CBR is easier to use, then this supports the argument that there is a reasonable
amount of process conformance in the PBR® CBR ordering.

In a debriefing questionnaire, which subjects completed after each of the original quasi-experiment and
the two replications, we asked them the following question: Which technique is the easiest one to use for
defect detection?

The three response categories were: PBR, CBR, and their everyday-practice reading technique. We
pooled the answers of all three studies. We found that 57% (34/60) selected CBR, only 18% (11/60)
selected PBR, and 22% (13/60) selected their everyday practice reading technique. This provides some
assurance of process conformance as described in Section 3.

However, even if there was contamination in the form of subjects who are supposed to be using CBR
actually using PBR in the PBR® CBR ordering, that would be expected to improve the results of the CBR
subjects. We found that PBR is better than CBR on all of our dependent variables. Therefore, if such a
contamination existed, it was not sufficient enough to affect our results, and in fact, we could then
consider that our results underestimate the beneficial impact of PBR when compared to CBR.

4.6 Sample Size Requirements for Future Studies

The planning of future studies that compare CBR with PBR can benefit from the estimates of effect size
that we obtained. For repeated measures designs, we used the obtained mean effect sizes and the
average correlation coefficients to estimate the minimal number of teams that would be necessary to
attain a statistical power of 80% for one tailed tests at an alpha level of 0.1 using the paired t-test. These
are summarised in Table 15.%°

Team Defect Cost per Defect Cost per Defect Cost per Defect
Detection (Defect Detection) (Mesting) (Overall Inspection)
Effectiveness
Mean Effect Size 1.08 0.6 1.36 0.84
Egtimated Sample 16 22 8 13
Size

Table 15: Estimation of Sample Size (Number of Teams).

5 Threats to Validity

It is the nature of any empirical study that assumptions are made that later on restrict the validity of the
results. Here, we list all these assumptions that impose threats to internal and external validity.

5.1 Threats to Internal Validity

Experiments in general and quasi-experiments in particular suffer from the problem that some factors may
affect the dependent variables without the experimenter’'s knowledge [8]. This is referred to as a threat to
internal validity. Although the threats to internal validity must be minimised, it is often not possible to

% These sample size estimates are for two-person inspection teams. It is plausible that if there are more than two inspectors the
effect size will be larger. Therefore, if one utilises the above sample sizes in planning a study, they are certain to attain 80%
power for a study with more than two inspectors.

v39 -01/9/99 31

exclude them completely. For this study, we identified a potential history effect that may represent a
threat to internal validity [8][45] that was not addressed during the study.

An experimenter cannot enforce subjects to apply a reading technique all of the time?®. Inspectors start
their defect detection activity by either reading the specification or the code documents and may already
find defects during their first reading. Hence, it is plausible that a proportion of the reported defects are
not directly attributable to the application of a particular reading technique, even if the subject using it
applies it fully. However, as pointed out in [60], there is little possibility in quantifying this proportion.

5.2 Threats to External Validity

Threats to external validity limit the ability to generalise the results from an experimental study to a wider
population under different conditions. There are three threats to external validity that we have identified
for the current study:

Single Organisation

Our study was performed with subjects and code documents from a single organisation. While this
enjoys greater external validity than doing studies with students in a “laboratory” setting, it is uncertain
the extent to which the results can be generalised to other organisations.

Inspection Process

In this study, we assume that defect detection is an individual rather than a group activity. However,
other inspection processes in industry may exist that consider defect detection a group activity, such
as the one presented in [24].

Type of Inspected Documents

The code documents used in this study can be claimed to be representative of industrial code
documents. However, we cannot generalise our findings for other type of documents, such as design
or requirements documents.

To attain such generalisations, it is necessary to replicate the current study under different conditions.

6 Conclusions

Software inspection is considered as one of the most effective methods for software quality improvement.
To exploit their full potential, a software inspection must call for a close and strict examination of the
inspected artefact. This requires reading techniques that tell inspection participants what to look for and
how to scrutinise a software artefact in a systematic manner. Apart from the fact that only few reading
techniques are available, most recent work in this area focused on requirements documents because
quality improvement of those documents promise a high return on investment. However, in industrial
practice, the inspection of code documents still predominates, making the improvement of reading
techniques for code documents an issue of contemporary concern.

In this paper, we have elaborated upon the perspective-based reading approach for code artefacts and
compared its effectiveness and its cost per defect ratio to checklist-based reading. This was performed
through a quasi-experiment and two close replications with professional developers of Bosch Telecom
GmbH. During the three runs the subjects used the CBR approach as well as the PBR approach for
defect detection in code modules of Bosch Telecom GmbH.

Our results indicate that the effectiveness of two-person teams using PBR is greater than when using
CBR. Furthermore, we found that the cost per defect ratio using PBR is smaller than CBR during the

26 Recall that we checked that subjects followed PBR by checking that they had produced the necessary abstractions and test
cases. Also, we showed that a relatively large number of subjects found CBR to be easier to use than their everyday practice
reading technique and also easier to use than PBR. Therefore, we do not expect that subjects when they are supposed to use
CBR will revert to either of the other two, apparently more difficult, reading techniques. Furthermore, no performance feedback
was provided after the initial treatment, and this should dampen the potential for continuing to use the first reading technique.
Nevertheless, despite the above, we cannot be sure that the subjects followed the specified techniques all of the time during their
defect detection activity and all detected defects are found because of applying a reading technique.

v39 -01/9/99 32

defect detection phase of inspections. Applying a PBR scenario helps improve a subject’s perceived
understanding of a code artefact, although it also consumes more effort on an inspector’s behalf. This
increased understanding leads to less cost per defect for PBR compared with CBR during the meeting
phase of an inspection. Overall, we found that the cost per defect for the whole inspection is lower with
PBR than with CBR. Therefore, PBR has effectiveness and cost advantages when compared with CBR.

We provided the scenarios that we have used during the quasi-experiment and its replications in the
appendix to this paper. Managers or technical staff wishing to pilot PBR within their organisations can
take the perspectives and scenarios presented in this paper as a starting point for tailoring the PBR
technique to their specific environment. Feedback from the inspectors would help him or her to improve
the specificity and the detail of the guidelines. He or she may also consider incorporating other
perspectives as we discussed in the paper.

Quasi-experimentation is an approach that can be applied when it is not feasible to assign subjects to
treatments randomly. This situation can often be found in industrial settings. We are aware that quasi-
experiments by their nature have difficulties in ruling out internal threats to validity. Some threats have
their origin in the fact that this was not an experiment with students but in the field, that is, with software
professionals from industry. We were careful to describe and address all of them in detail so that other
researchers benefit from the lessons we have learned. They can, therefore, try to avoid these threats
while replicating this quasi-experiment or setting up other empirical studies in this area. In general, we
found quasi-experiments a good empirical approach that provides benefits for both researchers and
practitioners. Other researchers may consider this kind of empirical study as one way of studying effects
with real programmers in real industrial settings.

Our quasi-experiment adds to the current knowledge that more advanced reading techniques, such as
perspective-based reading, optimise and improve software inspections by leveraging their effectiveness
and reducing their cost. However, we need to collect more data to establish greater external validity to
these results. We therefore encourage the external replication of this study in different environments by
different researchers. A replication can take many forms, such as controlled experiments or case studies
in industrial projects.

However, replication in general raises the question of how to compare and combine the results of the
original study and the replications. We found meta-analysis techniques a useful tool for this purpose.
Other researchers may consider these techniques in their arsenal of analysis approaches. This requires
that researchers performing empirical research not only present results from statistical significant tests in
their articles, e.g., p-values, but also compute and include the effect size and the number of subjects in
their reporting.

7 Acknowledgements

We want to extend our very warm thanks to both the managers and developers at Bosch Telecom GmbH
for their dedicated efforts in making possible as well as in participating in this study. We also wish to
thank the anonymous reviewers for their valuable comments that have contributed to improving the
content and presentation of this paper.

8 References

[1] A. Aron and E. Aron. Statistics for Psychology. Prentice Hall, 1% edition, 1994.

[2] V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, and M. Zelkowitz. The
Empirical Investigation of Perspective-based Reading. Empirical Software Engineering, 2(1):133—
164, 1996.

[3] V. Basili. Evolving and Packaging Reading Technologies. Journal of Systems and Software, 38(1),
July 1997.

[4] D. Bisant and J. Lyle. A Two-Person Inspection Method to Improve Programming Productivity. IEEE
Transactions on Software Engineering, 15(10):1294-1304, October 1989.

v39 -01/9/99 33

[5]

(€]

[7]
[8]
9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]
[25]

[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

v39 —

L. Briand, K. EI Emam, T. Fussbroich, and O. Laitenberger. Using Simulation to Build Inspection
Efficiency Benchmarks for Development Projects. Proceedings of the Twentieth International
Conference on Software Engineering, pages 340-349. IEEE Computer Society Press, 1998.

A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood. Replication of experimental results in software
engineering. International Software Engineering Research Network (ISERN) Technical Report
ISERN-96-10, University of Strathclyde, 1996.

R. Brooks. Studying Programmer Behavior Experimentally: The Problems of Proper Methodology.
Communications of the ACM, 23(4):207-213, April 1980.

D. Campbell and J. Stanley. Experimental and Quasi-Experimental Designs for Research.
Houghton Mifflin, Boston, 1966. ISBN 0-395-30787-2.

B. Cheng and R. Jeffery. Comparing Inspection Strategies for Software Requirements
Specifications. Proceedings of the 1996 Australian Software Engineering Conference, pages 203—
211, 1996.

Y. Chernak. A Statistical Approach to the Inspection Checklist Formal Synthesis and Improvement.
IEEE Transactions on Software Engineering, 22(12):866—874, December 1996.

D. A. Christenson, H. Steel, and A. Lamperez. Statistical Quality Control applied to Code
Inspections. IEEE Journal on Selected Areas in Communication, 8(2):196—200, February 1990.

W. Cochran. Planning and Analysis of Observational Studies. John Wiley & Sons, 1983.

J. Cohen. Statistical Power Analysis for the Behavioural Sciences. Lawrence Erlbaum Associate
Publishers, second edition, 1988.

J. Cohen. A New Goal: Preventing Disease, Not Infection. Science, 262:1820-1821, 1993.

J. Cohen. The Earth Is Round (p<.05). American Psychologist, 49:997-1003, 1994.

T. Cook and D. Campbell. Quasi-Experimentation: Design and Analysis Issues for Field Settings.
Rand McNally College Publishing Company, Chicago, 1979.

M. Cowles and C. Davis. On the Origins of the .05 Level of Statistical Significance. American
Psychologist, 37(5):553-558, 1982.

B. Curtis. Measurement and Experimentation in Software Engineering. Proceedings of the IEEE,
68(9):1144-1157, September 1980.

B. Curtis. By the Way, Did Anyone Study any Real Programmers? Empirical Studies of
Programmers: First Workshop, pages 256—262. Ablex Publishing Corporation, 1986.

J. Daly. Replication and a Multi-Method Approach to Software Engineering Research. PhD thesis,
University of Strathclyde, 1996.

H. Deitel and P. Deitel. C How to program, 2" ed.. Prentice Hall, 1994.

E. Doolan. Experience with Fagan’'s Inspection Method. Software - Practice and Experience,
22(2):173-182, 1992.

M. Dyer. The Cleanroom Approach to Quality Software Development. John Wiley and Sons, Inc.,
1992.

M. Fagan. Design and Code Inspections to Reduce Errors in Program Development. IBM Systems
Journal, 15(3):182-211, 1976.

M. Fagan. Advances in Software Inspections. IEEE Transactions on Software Engineering,
12(7):744-751, July 1986.

R. Fisher. Combining Independent Tests of Significance. American Statistician, 2(5), 1948.

P. Fowler. In-process Inspections of Workproducts at AT&T. AT&T Technical Journal, 65(2):102—
112, March 1986.

P. Fusaro and F. Lanubile. A Replicated Experiment to Assess Requirements Inspection
Techniques. Empirical Software Engineering, 2(1):39-57, 1997.

J. Gibbons and J. Pratt. P-values: Interpretation and Methodology. The American Statistician,
29(1):20-25, 1975.

T. Gilb and D. Graham. Software Inspection. Addison-Wesley Publishing Company, 1993.

G. Glass, B. McGaw, M. L. Smith, Meta-Analysis in Social Research, Sage Publications, 1981.

M. Graden, P. Horsley, and T. Pingel. The Effects of Software Inspections on a Major
Telecommunications Project. AT&T Technical Journal, 65(3):32—40, May/June 1986.

A. Greenwald. Within-Subjects Designs: To Use or Not to Use? Psychological Bulletin, 83(2),
September 1976.

J. Grizzle. The Two-period Chance-over Design and its Use in Clinical Trials. Biometrics, 21:314—
320, 1965.

01/9/99 34

[35]
[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]
[45]
[46]
[47]
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

v39 —

W. Hays. Statistics. Hartcourt Brace, 1994.

W. Hayes. Research Synthesis in Software Engineering: A Case for Meta-Analysis. To appear in
Proceedings of the International Symposium on Software Metrics, 1999.

L. Hedges and I. Olkin. Statistical Methods for Meta-Analysis. Academic Press, 1985.

D. T. Heinsman and W. R. Shadish, Assignment Methods in Experimentation: When Do
Nonrandomized Experiments Approximate Answers From Randomized Experiments?,
Psychological Methods, 1(2):154-169, 1996.

R. Henkel. Tests of Significance. Sage Publications, 1976.

M. Hills and P. Armitage. The Two-period Cross-over Clinical Trial. British Journal of Clinical
Pharmacology, 8:7— 20, 1979.

M. Hwang. The Use of Meta-Analysis in MIS Research: Promises and Problems. The DATA BASE
for Advances in Information Systems, 27(3):35-48, 1996.

J. Cohen. Applied Multiple Regression/Correlation Analysis for the Behavioural Sciences. Lawrence
Erlbaum Associates, Inc., Publishers, 1983.

P. Jalote and M. Haragopal. Overcoming the NAH Syndrome for Inspection Deployment. In
Proceedings of the Twentieth International Conference on Software Engineering, pages 371-378.
IEEE Computer Society Press, 1998.

P. Johnson and D. Tjahjono. Does Every Inspection Really Need a Meeting ? Empirical Software
Engineering, 3:9-35, 1998.

C. Judd, E. Smith, and L. Kidder. Research Methods in Social Relations. Holt, Rinehart and
Winston, 6" edition, 1991.

G. Keren. A Handbook for Data Analysis in the Behavioural Sciences - Methodological Issues,
Chapter 19: Between- or Within-Subjects Design: A Methodological Dilemma. Lawrence Erlbaum
Associates, 1993.

B. Kernighan and D. Ritchie. Programming in C. Hanser Verlag, 1990.

B. Kitchenham, S. Linkman, and D. Law. Critical Review of Quantitative Assessment. Software
Engineering Journal, pages 43-53, March 1994.

H. Kraemer and S. Thiemann. How many Subjects. Sage Publications, 1987.

S. Kramer and R. Rosenthal: “Effect Sizes and Significance Levels in Small-Sample Research”. In
R. Hoyle (ed.): Statistical Strategies for Small Sample Research, Sage Publications, 1999.

S. Kusumoto, A. Chimura, T. Kikuno, K. Ichi Matsumoto, and Y. Mohri. A Promising Approach to
Two-Person Software Review in an Educational Environment. Journal of Systems and Software,
(40):115-123, 1998.

O. Laitenberger and C. Atkinson. Generalizing Perspective-based Inspection to handle Object-
Oriented Development Artefacts, Proceedings of the 21% International Conference on Software
Engineering, Los Angeles, USA, 1999.

O. Laitenberger and J.-M. DeBaud. An Encompassing Life-cycle Centric Survey of Software
Inspection. Journal of Systems and Software (2000), also published as International Software
Engineering Research Network (ISERN) Technical Report ISERN-98-14, Fraunhofer Institute for
Experimental Software Engineering, http://www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html.
1998.

O. Laitenberger and J.-M. DeBaud. Perspective-based Reading of Code Documents at Robert
Bosch GmbH. Information and Software Technology, 39:781-791, March 1997.

L. Land, C. Sauer, and R. Jeffery. Validating the Defect Detection Performance Advantage of Group
Designs for Software Reviews: Report of a Laboratory Experiment Using Program Code. In 6th
European Software Engineering Conference, pages 294-309. Lecture Notes in Computer Science
No 1301, ed. Mehdi Jazayeri, Helmut Schauer, 1997.

R. Linger, H. Mills, and B. Witt. Structured Programming: Theory and Practice. Addison-Wesley
Publishing Company, 1979.

M. Lipsey. Design Sensitivity. Sage Publications, 1990.

T. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, 2(4):308-320,
December 1976.

J. McCall. Quality Factors. In J. Marciniak, editor, Encyclopedia of Software Engineering, volume 2,
pages 958- 969. John Wiley and Sons, 1994.

J. Miller, M. Wood, and M. Roper. Further Experiences with Scenarios and Checklists. Empirical
Software Engineering, 3(1):37—-64, 1998.

01/9/99 35

[61]
[62]

[63]

[64]
[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

[77]
[78]

[79]
[80]
[81]
[82]
[83]
[84]
[85]

[86]

v39 —

J. Miller. Applying Meta-Analytical Procedures to Software Engineering Experiments. To appear in
Journal of Systems and Software.

G. Myers. A Controlled Experiment in Program Testing and Code Walkthroughs / Inspections.
Communications of the ACM, 21(9):760-768, September 1978.

National Aeronautics and Space Administration. Software Formal Inspection Guidebook. Technical
Report NASA-GB-A302, National Aeronautics and Space Administration, August 1993.
http://satc.gsfc.nasa.gov/fi/fipage.html.

Panel on Statistical Methods in Software Engineering.
http://www.nap.edu/readingroom/books/statsoft/, 1993.

D. Parnas and D. Weiss. Active Design Reviews: Principles and Practice. Journal of Systems and
Software, 7:259-265, 1987.

A. Porter, H. Siy, C. Toman, and L. Votta. An Experiment to Assess the Cost-Benefits of Code
Inspections in Large Scale Software Development. IEEE Transactions on Software Engineering,
23(6):329-346, June 1997.

A. Porter, L. Votta, and V. Basili. Comparing Detection Methods for Software Requirements
Inspections: A Replicated Experiment. IEEE Transactions on Software Engineering, 21(6):563-575,
June 1995.

A. Porter and L. Votta. Comparing Detection Methods for Software Requirements Inspections: A
Replication Using Professional Subjects. Empirical Software Engineering, 3:355-379, 1998.

R. Lindsay and A. Ehrenberg. The Design of Replicated Studies. The American Statistician,
47(3):217-228, 1993.

B. Regnell, P. Runeson, and T. Thelin. Are the Perspectives Really Different? Further
Experimentation on Scenario-Based Reading of Requirements. Technical Report LUTEDEX(TETS-
7172)/1-40/1999, Dept. of Communication Systems, Lund University, 1999.

S. Rifkin and L. Deimel. Applying Program Comprehension Techniques to Improve Inspection,
Proceedings of the 19" Annual NASA Software Engineering Workshop, NASA, 1994.

R. Rosenthal. Meta-Analytic Procedures For Social Research. Sage Publications, 1984.

R. Rosenthal and R. Rosnow. Essentials of Behavioural Research: Methods and Data Analysis.
McGraw Hill Series in Psychology, 1991.

R. Rosnow and R. Rosenthal. Beginning Behavioural Research: A Conceptual Primer. Prentice Hall
International Editions, 1996.

K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and N. Ohlsson. An Extended
Replication of an Experiment for Assessing Methods for Software Requirements Inspections.
Empirical Software Engineering, 3:327-254, 1998.

F. Schmidt. What Do Data Really Mean? Research Findings, Meta-Analysis, and Cumulative
Knowledge in Psychology. American Psychologist, 47:1173-1181, 1992.

D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, 1997.
S. Siegel and J. Castellan. Nonparametric Statistics For The Behavioural Sciences. McGraw Hill,
Inc., 2™ edition, 1988.

E. Simpson. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical
Society, B13:238-241, 1951.

P. Spector. Research Designs. Number 07-023 in Quantitative Applications in the Social Sciences.
Sage Publications, 1995.

S. Shapiro and M. Wilk. A Comparative Study of Various Tests of Normality. Journal of the
American Statistical Association, 63:1343-1372, 1968.

M. Slatker, Y. B. Wu, N. S. Suzuki-Slatker, *, **, and ***; Statistical Nonsense At the .00000 Level,
Nursing Reasearch, 40(4):248-249, 1991.

V. Basili, F. Shull, and F. Lanubile. Using Experiments to Build a Body of Knowledge. Technical
Report, University of Maryland, CS-TR-3983, 1998.

T. van Dijk and W. Kintsch. Strategies of Discourse Comprehension. Academic Press, Orlando,
1984.

L. Votta. Does Every Inspection Need a Meeting? ACM Software Engineering Notes, 18(5):107—
114, December 1993.

L. Votta. Does the Modern Code Inspection Have Value? Presentation at the NRC Seminar on
Measuring Success: Empirical Studies of Software Engineering, March 1999. Available at:
http://www.cser.ca/seminar/ESSE/slides/ESSE_Votta.PDF

01/9/99 36

[87] B. Winer, D. Brown, and K. Michels. Statistical Principles in Experimental Design, 3" edition.
McGraw Hill Series in Psychology, 1991.

[88] F. Wolf. Meta-Analysis: Quantitative Methods for Research Synthesis. SAGE University Paper,
1986.

[89] E. Youngs. Human Errors in Programming. International Journal of Man-Machine Studies, 6:361—
376, 1974.

[90] G. Yule. Notes on the Theory of Association of Attributes in Statistics. Biometrika, 2:121-134, 1903.

v39 -01/9/99 37

9 Appendix A: The PBR Defect Detection Mechanisms

In this appendix we describe the assumptions behind PBR as precisely as possible. These assumptions
are embedded in many scenario-based reading techniques, but have not always been clearly articulated.
It is useful to spell out the embedded assumptions and assumed mechanisms that would make, in our
case, PBR better than CBR, for the following reasons:

1. By making them explicit, it is possible to empirically evaluate the assumed mechanisms and
assumptions to ensure that they really are the ones that are operating and that are causing the
observed effects.

2. This will then allow us to gain a better understanding of the mechanisms that would make a
reading technique work better than another. Such an improved understanding of the mechanisms
can pave the road for improving the reading techniques themselves.

9.1 The Stated Underlying Defect Detection Assumptions in PBR

When using CBR, individual subjects do not adopt a particular perspective while reading the documents,
whereas they do when they are implementing PBR. With a perspective, a subset of the defects in the
document have a high probability of being detected, while the remainder of the defects have a relatively
low probability of being detected by that perspective. Conversely, with CBR one would expect more
uniformity in the probability of detection across defects. This reasoning makes it clear that we do not
necessarily expect individual PBR inspectors to be more effective than individual CBR inspectors. We
rather expect the effectiveness benefits of PBR to become apparent on the team level.

The posited mechanism in the literature that explains why PBR teams are likely to attain higher inspection
effectiveness compared with CBR teams is depicted in Figure 9. Here, it is stated that because PBR
focuses the inspectors’ attention on different subsets of defects in a document, this will lead to a reduction
in overlap (i.e., the same defects found by multiple inspectors). This is path (a) and represents a negative
association between the extent to which the reading technique focuses the inspectors’ attention on
different defect subsets (Subset Focus) and the extent of overlapping defects (Defect Overlap). It is also
stated that the reduction in defect overlap leads to a greater inspection effectiveness, which is shown by
path (b) and is represented by a negative association. First we demonstrate that these are the
assumptions made in the literature.

Subset - > Defect - > Inspection
Focus (a) Overlap (b) Effectiveness

+
()

Figure 9: Posited mechanisms explaining the effect of PBR on inspection effectiveness.

v39 -01/9/99 38

Perhaps a fitting description of the assumption represented by path (a) in Figure 9 is given as follows
“One main purpose of PBR is that the perspectives detect different kinds of defects in order to minimise
the overlap among reviewers. [...] If they detect the same defects, the overlap is not minimised and PBR
does not work as it was meant to. [...] The optimal solution is to use perspectives with no overlap” [70].
Figure 10 illustrates the effects expected on a team level for a two-person inspection team, which is also
the context of our study.

Set of defects found by Set of defects found by two inspectors
two inspectors using checklists using PBR scenarios

Figure 10: Effect of different reading techniques at a team level.

The defect overlap reduction has been posited to increase the effectiveness of PBR when compared with
CBR (path (b) in Figure 9). For example, in the context of scenario-based reading techniques, it has been
stated that “Our hypothesis is that [a] systematic technique, specific and distinct responsibility inspections
[such as PBR] achieve broader coverage and minimize reviewer overlap, resulting in higher fault
detection rates and greater cost benefits than nonsystematic methods.” [67][68],27 and “The effort spent
by [..] inspectors for defect detection can only be justified if they find different defects, i.e., if there is a
small overlap between inspectors’ perspectives.” [54]

In the following subsection we show that the causal mechanism represented by paths (a) and (b) does
not explain the effectiveness of PBR over CBR, and in fact only path (c) in Figure 9 explains the
mechanism. This means that defect overlap has nothing to do with the impact of the use of PBR on
inspection effectiveness, nor does it indicate how well defects are targeted by the perspectives.

9.2 Evaluating the Underlying Defect Detection Assumptions of PBR

In this subsection we elaborate a probabilistic model®® for PBR and CBR with two inspectors. The
purpose of the exposition is to determine whether the defect overlap reduction mechanism posited above
would lead to increased defect detection effectiveness for PBR when compared with CBR.

9.2.1 Definitions

One of the main criteria for evaluating a software inspection is its effectiveness [5], which is defined as
the proportion of actual defects found. To give this a frequentist interpretation, assume that a document
has K defects and that the effectiveness of the inspection is 0.7 (i.e., 70% of the defects will be found). If
one were to sample randomly with replacement from the K defects, then in the long run 70% of the
sampled defects will be ones that are detected during the inspection. Therefore, in general when we say
that a defect has a 0.7 probability of being detected, we mean that in the long run it will be selected 70%
of the time. This interpretation has the convenient property that it is directly related to the common notion
of inspection effectiveness.

When using a PBR perspective, a subset of the defects in the document have a high probability of being
detected, while the remainder of the defects have a relatively low probability of being detected by that

2" It should be noted that other authors, namely Johnson and Tjahjono [44], have also interpreted the Porter et al. article [67] to be
explicitly stating that the reduction in overlap is a causal mechanism that explains the improved defect detection performance of a
scanerio-based reading technique.

2 defining the model we make the standard assumptions that inspectors and defects are independent.

v39 -01/9/99 39

perspective. We can depict this in the two-perspective case (which is congruent with our study) as
follows:

Per spective A Per spective B CBR
Subset Pa-rigH Ps.Low
=)
Subsetg Pa-Low Ps-ricH

Subset, and Subsetg constitute all defects in the document. This is congruent with the premise of PBR in
that the totality of perspectives should provide comprehensive coverage of the defects in the inspected
document. This is an explicitly stated objective of scenario-based reading techniques in general. For
instance, in his discussion of reading families, such as DBR and PBR, Basili [3] states “each technique
within the family is [...] (4) focused, in that it provides a particular coverage of the document, and a
combination of techniques in the family provides coverage of the entire document”.

Therefore, when a subject is using perspective A, a defect in Subset, has a high probability (PanicH) Of
being detected. In addition, a defect in Subsetgs has a low probability (Parow) Of being detected.
Therefore, perspective A is really targeting defects in Subset,. The same argument can be made for
perspective B above. This is the basic premise of PBR.

We let Pp be the proportion of defects in a document that are in Subset,. Therefore, 1-Pp is the proportion
of defects in Subsetg.

In the case of CBR, we would expect uniformity in the detection probabilities since no specific defects are
targeted. Therefore, we can say for CBR:

Patich = Paow =P Eqn. 1
where P is the probability of finding a defect using CBR.
We can also assume the following for PBR:
I:)A—HIGH = I:)B—HIGH = I:)HIGH Eqn' 2

PA— Low — PB— Low — PLOW Eqn. 3

This states that the efficacy of both perspectives in targeting a subset of defects is the same. This is
empirically supported in [67].

The definition of PBR demands that the following two constraints also hold:

Pien > P Ean. 4

v39 -01/9/99 40

Poy <P Eqn. 5

Eqgn. 4 is necessary since the premise of PBR is that it will target the relevant subset of defects, Subset,,
with a higher probability than a technique that does not embody targeting defects, such as CBR. In fact, if
Egn. 4 was not true, then by definition PBR cannot be better than CBR in terms of effectiveness.
Therefore, if we do not believe Eqgn. 4 then it is futile to compare PBR with CBR. Egn. 5 is necessary
because it states that defects that are not in the subset will receive little attention from a particular
perspective compared with a technique that does not embody targeting defects. If this were not the case

then there is no need for the perspectives to target a specific subset since even if P, =P, the PBR

team will systematically perform as good as or better than CBR. Therefore, the basis of PBR as described
by the above two inequalities is to focus more on a subset of defects, and focus less on other defects that
are not targeted when compared to CBR.

Now let us define Eqn. 4 and Eqgn. 5 more precisely:

Pyey =P+D; Eqn. 6

Pow =P-D, Eqn. 7

where the deltas are values indicating how much better than CBR the particular PBR implementation is at
targeting defects.”

9.2.2 Testing Path (a)

In this subsection we show that the Overlap Reduction effect does not follow from the Subset Focus
assumption (path (a) in Figure 9). We can define the probability of finding a defect by both inspectors (an
overlap defect) using PBR as:

P(OvalapDefeCt US ng PBR) = I:)HIGH I:)LOW I:)P + I:)HIGH I:)LOW (1- PP) = I:)HIGH I:)LOW Eqn 8

P(Overlap Defect Using PBR)=(P + D,)(P- D,)=P? - PD, + PD, - D,D, Eqn. 9

If the Overlap Reduction effect follows from the Subset Focus assumption, then we would expect that as
the PBR perspectives become better at focusing on a specific subset of defects, the overlap as defined in
Egn. 9 would decrease. Let us say that we have constructed improved PBR perspectives that are
superior to traditional perspectives by means of an increased probability to detect defects in the target
subset, and therefore the following holds:

PI-‘HGH =P+D +T Eqn. 10

where the additional positive T indicates that the PBR definition is superior to the normal PBR as defined
by Eqn. 6 at focusing on a target subset of defects. This also means that different perspectives are
focusing better on different defects. If we subsitute Eqn. 10 into Eqgn. 8, we get the following:

% It is assumed that all PBR implementations would have deltas that are positive.

v39 -01/9/99 41

(P+D1+T)(P' Dz):(Pz' PD, + PD, - D1D2)+T(P' Dz)

Eqgn.

11

This indicates that the improved PBR, in that it is better able to focus on a specific subset of defects, will
actually result in an increased overlap rather than a reduced one. This example demonstrates that the
first set of assumptions about the relationship between focus and overlap in PBR are not necessarily true.
It also shows that defect overlap is not a good indicator of the extent to which different perspectives focus

on different defects.
9.2.3 Testing Path (b)

The probability of finding a defect by both inspectors using CBR is given by:

If we define the following constraint, which we shall return to later:

P(Overlap Defect Using CBR) = P2

?2,>7,

then we can expand this inequality as follows:

v39 -01/9/99

P

I:)HIGH

Eqgn.

Eqgn.

Eqgn.

Eqgn.

Eqgn.

Eqgn.

Eqgn.

Eqgn.

Eqgn.

12

13

14

15

16

17

18

19

20

42

(0,” (P- D,))- (P" D,)<0 Eqn. 21

(d,” (P- D,))- (P" D,)+ P <P? Eqn. 22
(D,” P)- (b, D,)- (P" D,)+P?<P? Eqn. 23
(P+D,) (P- D,)<P? Eqn. 24

Puei ~ Poow <P” Eqn. 25

Eqgn. 25 tells us that the probability of finding a defect by both inspectors using PBR is less than for CBR.
However, this is only under the condition specified in Eqgn. 13. Eqn. 13 makes intuitive sense since it

places a minimal threshold on D, . The larger the value of D, the more focused a PBR perspective is.

The smaller the value of D,, then the greater the probability that a perspective will be finding defects that
are targeted by the other perspective. Eqn. 13 specifies the constraint in terms of a minimal fraction of
D,.

Now we consider the overall probability of detecting a defect by the PBR team and the CBR team. We
have:

P(DetectingaDefect Using PBR) = P + Pow - (Pucs ~ Piow) Eqn. 26

And the overall probability of detecting a defect by the CBR team is:

P(DetectingaDefect Using CBR) = (2° P)- P? Eqn. 27

If we define the following constraint, which we shall return to later:

D, (1_ p) Eqn. 28

D, >
1- PLOW

then we can expand this inequality as follows:

D, (1' PLOW)> D,” (1' P) Ean. 29

(D, (1- P+D,))+(D,” (P-1)>0 Eqn. 30

v39 -01/9/99 43

(2" P)- P2+(D,” (- P+D,))+(D,” (P-1)>(2" P)- P? Eqn. 31

(2, P)' P2+D1' (D1, P)+(D1, D2)+(D2, P)' D, >(2, P)' P Ean. 32
(P+D,)+(P- D,)- (P+D.) (P~ D,)>(2" P)- P* Ean. 33
Paien + Plow - (PHIGH ’ PLOW)>(2, P)' P Ean. 34

Eqgn. 34 tells that the probability of finding a defect using PBR is greater than that of CBR, but only under
the condition stipulated in Eqn. 28. Eqn. 28 makes intuitive sense, in that it sets a lower limit on the
probability of detecting the targeted defects using PBR.

Based on the defect overlap reduction mechanism in the literature (i.e., path (b) in Figure 9), we would
expect that the condition specified in Eqn. 13, which is necessary for the defect overlap reduction effect of
PBR, to be a precondition for Eqn. 28. However, it will be noted that the two constraints that we have
identified, namely Egn. 28 and Eqgn. 13, are not the same. This should not be surprising, however, as they
are addressing different issues. The reduction in overlap due to using PBR could also increase the
number of unique defects that are discovered, but not necessarily so. In order to increase the number of
discovered defects, it is not necessary to minimise the defect overlap at all. They are two separate issues
that do not necessarily follow each other.

We illustrate this more clearly below. We first define the following differences such that if the value is
positive then that indicates that PBR is performing better than CBR, and negative otherwise:

Difference(Defect Detection) = P(Detecting a Defect Using PBR) — Ean. 35
P(Detecting a Defect Using CBR) an-
Difference(Overlap) = P(Overlap Defect Using CBR) —

P(Overlap Defect Using PBR) Eqn. 36

Based on the posited defect overlap reduction mechanism in Figure 9, one would expect that whenever
Eqgn. 36 is positive, then it follows that Eqn. 35 is also positive for any implementation of PBR.

In the graph in Figure 11 we plot the differences above on the x and y axes. We take P=0.5 for the plots.
The value of Py is varied, and is represented as different lines. We use values of 0.6, 0.7, 0.8, and 0.9
(all have to be larger than P). We then generated values for P oy varying from 0 to 0.499. Each value of
PLow is used to calculate the x and y values for the given value of Pygn, and these are the values that
determine the co-ordinates on the graph. Such a plot allows us to represent all of the information in one
plot.

v39 -01/9/99 44

o2 ——

©
'_\

Increasing R o\,

PricH™

Difference(Defect Detection)
o o
- o

P 0.6

HIGH

-0.2

-0.2 -0.1 0.0 0.1 0.2 0.3

Difference(Overlap)

Figure 11: Difference in Defect Detection against Difference in Overlap.

In quadrant (1), inequality Eqn. 13 is not satisfied, but Eqn. 28 is satisfied. In such a case P, is so high
(i.e., D, is quite low) and therefore the overlap from using PBR is larger than that for using CBR. But

because D,is quite low, the inequality in Eqn. 28 is easily satisfied, and therefore PBR finds more
defects than CBR.

In quadrant (3), inequality Eqn. 13 is satisfied, but the inequality in Eqn. 28 is not satisfied. In such a case
P ow is so low (i.e., D, is quite large) and therefore there is very little overlap when using PBR. But,

because D, is high, inequality Eqn. 28 is not satisfied, and therefore the overall performance of PBR in
terms of defect detection is weak.

In quadrant (2) both inequalities are satisfied. This means that PBR achieves both outcomes: a reduction
in defect overlap and an increase in effectiveness. Of course, according to the literature, out of the three
guadrants only this quadrant should have any values.

What the above shows is that it is fairly plausible to attain one of the effects of PBR only, but not the
other. This also means that the “reduction in defect overlap” hypothesis, while it may co-occur with an
overall increase in defect detection, is certainly not a causal mechanism that can explain it.

To make the point more concretely, below we present the results of Monte Carlo simulations that illustrate
the lack of causalityso. The simulations are done for a document that has 30 defects with half in Subset,
and the other half in Subsetg, whereby we also have two inspectors. In all cases, 1000 inspections were

% While the results of the simulation can be derived from the above equations, it was felt that concrete examples would further
clarify the point.

v39 -01/9/99 45

simulated. We present the results in terms of box and whisker plots. The point is the mean. The box
represents one standard deviation, and the whiskers the minimum and maximum values.

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1 !

0.0

Proportion of Overlapping Defects
o

1.1

1.0 —_—
0.9 o

0.8

0.7

Effectiveness

0.6
0.5

0.4

PBR CBR

Figure 12: Results of a simulated inspection with Py, = 0.8 and P ow = 0.46.

The plot in Figure 12 shows an inspection in quadrant (1). This one had a Py ey of 0.8 and a P ow of 0.46.
As can be seen here, the mean proportion of overlapping defects is actually greater for PBR than for
CBR, but its mean effectiveness is also larger. This is an example of PBR not reducing overlapping
defects, but still being more effective.

v39 -01/9/99 46

0.65

0.55

0.45
0.35

0.25 o

0.15
[m]
0.05

-0.05

Proportion of Overlapping Defects

PBR CBR

1.1

0.8 o
0.7

0.6 —
0.5
0.4

Effectiveness

PBR CBR

Figure 13: Results of a simulated inspection with Py gy =0.8 and P ow =0.12.

The plot in Figure 13 shows an inspection in quadrant (2). This one had a Py of 0.8 and a P ow of 0.12.
In this particular case PBR had less overlap in defects (the top panel with PBR exhibiting a lower mean),

and also had a larger effectiveness.

The plot in Figure 14 shows an inspection in quadrant (3). This one had a Py of 0.6 and a P oy of 0.1.
For this particular inspection, PBR did have less overlapping defects than for CBR, but its effectiveness

was also lower than that for CBR.

v39 -01/9/99

47

0.6

0.5 _—
0.4

0.3

0.2
;ii: ——
0.0

PBR CBR

Proportion of Overlapping Defects
[u]

1.1
1.0

0.9 —_—
0.8

o
0.7

0.6
0.5
0.4
0.3
0.2

Effectiveness

PBR CBR

Figure 14: Results of a simulated inspection with Py gy = 0.6 and P oy =0.1.

9.3 Summary

The above illustrates that the postulated mechanism that explains the effectiveness benefits of PBR, as
shown through path (a) and path (b) in Figure 9, is incorrect. In fact, the benefits of PBR are explained
through path (c), where if the inequality in Egn. 28 is satisfied, then the probability of finding a unique

defect through PBR is greater than for CBR. This inequality sets a minimal value to D, in terms of a

fraction of D, .

v39 -01/9/99 48

10Appendix B: The Code Analyst Scenario

Code Analyst Scenario

Assume you have the role of a code analyst. As a code analyst you have to ensure that the right
functionality isimplemented in the code.

In doing so, take the code document and determine the functions that are implemented in this code

module. Determine the dependencies among these functions and document them in the form of a call

graph.

Starting with the functions at the leaves of the call graph, determine the implemented operation of each

function in the following manner.

1. Identify (sequences of) assignment operations and highlight them. Determine the meaning of these
(segquences of) assignment operations.

2. Combine the (sequences of) assignment operations by taking into account conditions and loops.
Determine the meaning of the larger structures.

Repeat 2 recursively until you have determined the operation that is implemented in a function. Document

the operation of each function.

Hint: It is useful to describe the different levels of abstraction asformal as possible. Using implicit
knowledge, such as, assumptions of global variable values, should be avoided.

Check for each function, whether your description matches the description that is given in code comments
and the description in the specification. If differences exist, check whether there is a defect. Document
each defect you detect on the defect report form.

While following the instructions ask yourself the following questions:

1.Does the operation described in the code match the one described in the specification?
2.Arethere operations described in the specification that are not implemented?

3.Isdata (i.e., constants and variables) used in a correct manner?

4. Areadl the calculations performed in a correct manner?

5.Areinterfaces between functions used correctly?

v39 -01/9/99 49

11Appendix C: The Tester Scenario

Tester Scenario

Assume you have the role of atester. Asatester you have to ensure that the functionality implemented in
the code is correct.

In doing so, take the code document and determine the functions that are implemented in this code
module. Determine the dependencies among these functions and document them in the form of a call
graph.

Starting with the functions at the leaves of the call graph, determine for each function a set of test cases

that allow you to stimulate the operation of the function. The set of test cases should allow you to check
each branch of the function as well as the loops. Document some of the test cases.

Assume you are executing the function with your test cases as input values (mental smulation). Verify,
whether each function behaves according to its specification and the comments given in the code. If
differences occur, check whether thereis a defect or not. Document each defect you detect on the defect
report form.

While following the instructions ask yourself the following questions:

1. Do you have the necessary information to identify a test case (e.g., areall constant values and
interfaces defined)?

2. Arebranch conditions used in a correct manner?

Can you generate test cases for each branch and each loop? Can you traverse all branches by
using specific test cases?

4. Isallocation and deallocation of memory used correctly?

v39 -01/9/99 50

12Appendix D: Testing for Carry-over Effects

Below we describe the approach for testing for carry-over effect. We have to state that a carry-over effect
from treatment A to treatment B may have two components. One is due to unique practice effects of
treatment A (which may be considered as a learning effect) and the other refers to the switch in
conditions from treatment A to treatment B. The significance test for carry-over effects is legitimate
regardless of whether either one or both of these effects may be present. However, the test is incapable
of discriminating between them.

To perform the test for carry-over effects, we have restructured our data set as shown in the following
table.

(CBR® PBR)- (PBR® CBR)-group
group
Team Period1 | Period2 | SUM Team Period1 | Period2 | SUM
(CBR) (PBR) (CBR+ (PBR) (CBR) (CBR+
PBR) PBR)
1 3 4 6 2 3 5
7 7
6 4 10 4 5
Mean Vl.l V1.2 V2.1 V2.2

Table 16: Structure of the Data Set.

To test for carry-over effects, one performs an analysis of variance comparing the variability between
sequences (or orders) with that of subjects within sequences (or orders). Let Vi_k be the mean of all

scores for order i and period k. In our case, we have two orders (PBR ® CBR, CBR ® PBR) and two
periods (Period 1 and Period 2). Let Vij_ be the total of the two scores for subject j in sequence.

Grizzle [34] reports a convenient formula for SSsequences = SScary-over:

n, n , ([= = > \2
SS = : 2 (Yl.l + Y1.2 - Y2.1 - Yz.z)

Carryover m Egn. 20

The degrees of freedom equals the number of sequences minus 1, that is, dfcany-over = NUMber of
sequences -1 = 1. The Hills and Armitage error sum of squares [38] for testing for sequence effects can
be rewritten as

v39 -01/9/99 51

A = = 1 Egn. 21
g ga Ylj. £ ga Yz;. £ 3 g
. A e 2 9 2 i 2 i g U
’Subjects within sequences 0.5 aa Ylj. ta Y2] - - u
ei i n N, g
é U
e u

Note that deubjects within sequences = N1+Nz-2.
Based on these formulae, we can compute MScay-over aNA MS sypjects within sequences N the following manner:

M Scary-over = SScary-over

Eqgn. 22
SSSubjects within Sequences
MSSubjects within Sequences = df Eqn. 23
Subjects within Sequences
This allows us to compute the F-value as follows:
MScaryover
F(deequenoe'deubjects within Sequenoes) = Eqn. 24

M SSubjects within Sequences

v39 -01/9/99

52

13Appendix E: Data for the Meta-Analysis

p-value Z-Value Inp Correlation
(one sided) Coefficient
Quasi-Experiment 0.0074 2.44 -4.9 0.77
1% Replication 0.10 1.27 -2.28 0.78
2" Replication 0.02 2.05 -3.89 0.03*

Table 17: Data for Comparing and Combining p-values of the Team Defect Detection Effectiveness. The

Z is 1.92. The chi-square value 0.7098.

p-value Z-Value Inp Correlation
(one sided) Coefficient
Quasi-Experiment 0.11 1.22 -2.199 0.62
1% Replication 0.043 1.72 -3.15 -0.02*
2" Replication 0.24 0.7 -1.44 0.03*

Table 18: Data for Comparing and Combining p-values of the Cost per Defect for the Defect Detection

Phase. The Z is 1.213. The chi-square value 0.52.

p-value Z-Value Inp Correlation

(one sided) Coefficient
Quasi-Experiment 0.0004 34 -7.797 0.55
1% Replication 0.035 1.81 -3.34 0.48
2" Replication 0.016 2.16 -4.16 0.17

Table 19: Data for Comparing and Combining p-values of the Cost per Defect for the Meeting Phase.
The Z is 2.46. The chi-square value 1.39.

% The results from one team had a large impact on this correlation coefficient. When removing this observation the correlation
coefficient is 0.20. The associated effect size is 0.85, which is lower than the one presented previously. This derives from the fact
that removing this data point also changes the mean values and the standard deviation. However, the removal of this observation
does not alter our meta-analysis conclusions, and has negligible impact on the total effect size.

%2 The results from one team had a large impact on this correlation coefficient. When removing this observation the correlation
coefficient is 0.47. The associated effect size is 0.93, which is larger than the one presented previously. The removal of this
observation actually improves the results in favor of PBR, which means that the results we present in the body of the paper are
conservative.

% The results from one team had a large impact on this correlation coefficient. When removing this observation the correlation
coefficient is 0.26. The associated effect size is 0.06, which is quite smaller than the one presented previously. This can be
explained by the fact that the removal of this observation actually results in similar mean values of PBR and CBR. Thus the effect
size becomes smaller. Although the removal of this observation reduces the total effect size, the results are still in favour of PBR
and our meta-analysis conclusions still hold.

v39 -01/9/99 53

p-value Z-Value Inp Correlation

(one sided) Coefficient
Quasi-Experiment 0.05 1.65 -2.99 0.65
1% Replication 0.02 2.03 -3.83 0.21
2" Replication 0.11 1.23 -2.21 0.27

Table 20: Data for Comparing and Combining p-values of the Cost per Defect for the Overall Inspection.
The Z is 1.64. The chi-square value 0.3203.

v39 -01/9/99 54

14Appendix F: Results of the Carry-over Effect Tests

In this appendix we present the results of the carry-over effect analysis for each of our four dependent

variables.

14.1 Carry-over Effect for Defect Detection Effectiveness

The table below shows the analysis of variance results for carry-over effects for the dependent variable:
defect detection effectiveness. This indicates that no carry-over effect is discernable (all F values are not
significant at an alpha level of 0.1).

SSCarry-over SSSubj ects DfSijecls within M SCarry-c'ver M SSubj ects F(deequenoea p'VaI ue
within Sequences Sequences within Sequences deijeclswithin
guences)
Quasi -Experiment 0.68 6.99 7 0.68 0.9985 0.68 0.56
1% Replication 0.38 9.10 8 0.38 114 0.33 0.42
2" Replication 0.91 4.02 8 0.91 0.50 1.82 0.79

Table 21: Results of Testing for Carry-over Effect (Defect Detection Effectiveness).

14.2 Carry-over Effect of the Cost per Defect for the Defect Detection

Phase

The table below shows the analysis of variance results for carry-over effects for the dependent variable:
cost per defect for the defect detection phase. This indicates that no carry-over effect is discernable (all F

values are not significant at an alpha level of 0.1).

SSCarry-over SSSubj ects DfSijecls within M SCarry-c'ver M SSubj ects F(deequenoea p'VaI ue
within Sequences Sequences within Sequences deijeclswithin
guences)
Quasi -Experiment 94.4733 56605.27 7 94.47329 8086.466 0.01 0.56
1% Replication 2623.80 29454.92 8 2623.802 3681.865 0.71 0.40
2" Replication 3141.29 229115 8 3141.291 2863.937 1.10 0.76

Table 22: Results of Testing for Carry-over Effect (Cost per Defect for the Defect Detection Phase).

14.3 Carry-over Effect of the Cost per Defect for the Meeting Phase

The table below shows the analysis of variance results for carry-over effects for the dependent variable:
cost per defect for the Meeting phase. This indicates that no carry-over effect is discernable (all F values
are not significant at an alpha level of 0.1).

SSCarry-over SSSubj ects DfSijecls within M SCarry-c'ver M SSubj ects F(deequenoea p'VaI ue
within Sequences Sequences within Sequences deijeclswithin
guences)
Quasi -Experiment 1261.43 84089.46 7 1261.43 12012.78 0.11 0.25
1% Replication 4816.45 46673.47 8 4816.45 5834.18 0.83 0.61
2" Replication 2557.84 31415.56 8 2557.84 3926.95 0.65 0.56
Table 23: Results of Testing for Carry-over Effect (Cost per Defect for the Meeting Phase).

v39 -01/9/99 55

14.4 Carry-over Effect of the Cost per Defect for the Overall

Inspection

The table below shows the analysis of variance results for carry-over effects for the dependent variable:
cost per defect for the overall inspection. This indicates that no carry-over effect is discernible (all F
values are not significant at an alpha level of 0.1).

SSCarry-over SSSubj ects DfSijecls within M SCarry-c'ver M SSubj ects F(deequenoea p-val ue
within Sequences Sequences within Sequences deijeclswithin
guences)
Quasi -Experiment 21.06 698.85 7 21.06 99.84 0.21 0.34
1% Replication 25.65 560.52 8 25.65 70.06 0.37 0.44
2" Replication 5.34 169.39 8 5.34 21.17 0.25 0.37

Table 24: Results of Testing for Carry-over Effect (Cost per Defect for the Overall Inspection).

v39 -01/9/99

56

Oliver Laitenberger is a researcher and consultant at the the Fraunhofer Institute for Experimental
Software Engineering (IESE) in Kaiserslautern. His main interests are software quality assurance with
software inspections, inspection measurement, and inspection improvement. As a researcher, Oliver
Laitenberger has been working for several years in the development and evaluation of inspection
technology. As a consultant, he has worked with several international companies in introducing and
improving inspections. Oliver Laitenberger received the degree Diplom-Informatiker (M.S.) in computer
science and economics from the University of Kaiserslautern, Germany, in 1996.

Khaled El Emam is currently at the National Research Council in Ottawa. He is the current editor of the
IEEE TCSE Software Process Newsletter, the current International Trials Coordinator for the SPICE
Trials, which is empirically evaluating the emerging ISO/IEC 15504 International Standard world wide,
and co-editor of ISO's project to develop an international standard defining the software measurement
process. Previously, he worked on both small and large research and development projects for
organizations such as Toshiba International Company, Yokogawa Electric, and Honeywell Control
Systems. Khaled EI Emam obtained his Ph.D. from the Department of Electrical and Electronics
Engineering, King’'s College, the University of London (UK) in 1994. He was previously the head of the
Quantitative Methods Group at the Fraunhofer Institute for Experimental Software Engineering in
Germany, a research scientist at the Centre de recherche informatique de Montreal (CRIM), and a
research assistant in the Software Engineering Laboratory at McGill University.

Thomas G. Harbich received his diploma degree in physics at the University of Regensburg, Germany in
1977 and his Ph.D. degree in theoretical solid state physics at the University of Stuttgart in 1982. He
joined ANT-Nachrichtentechnik GmbH, Backnang Germany (now BOSCH Telecom GmbH) in 1983 where
he held different engineering positions in the field of telecommunications systems. Currently he is leading
a department for software development with the main focus on embedded software for transmission
systems and access networks.

v39 -01/9/99 57

	www.seg.iit.nrc.ca
	covers.1059

