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The synthetic data generation 
process

Common Clarifications
• The source datasets can be as small as 100 or 150 

patients. We have developed generative modeling 
techniques that will work for small datasets.

• The source datasets can be very large – then it becomes 
a function of compute capacity that is available.

• It is not necessary to know how the synthetic data will be 
analyzed to build the generative models. The generative 
models capture many of the patterns in the source data.
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El Emam K, Mosquera L, Hoptroff R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data. Sebastopol, CA: 
O’Reilly Media 2020. 
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A combined loss of utility and privacy
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A combined loss of utility and privacy
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Privacy use cases
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Attribution disclosure: find a record in the synthetic data similar 
to a high risk real individual and learn something new about that 
individual

Sex Year of Birth NDC

Male 1975 009-0031

Male 1988 0023-3670

Male 1972 0074-5182

Female 1993 0078-0379

Female 1989 65862-403

Male 1991 55714-4446

Male 1992 55714-4402

Female 1987 55566-2110

Male 1971 55289-324

Female 1996 54868-6348

Male 1980 53808-0540

Quasi-identifiers New Information
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The process for a membership disclosure 
attack
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Generative models cannot guarantee always
producing data with low privacy risk, but we can

measure it every time and validate risk levels
cc: Daniel Mennerich - https://www.flickr.com/photos/29858421@N04
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Assessing the Utility of 
Synthetic Data
• Expert Discrimination

• Can a clinician to tell the difference between a real and a synthetic 
record ?

• Fidelity
• How similar the joint distribution of the synthetic data is to the joint 

distribution of the real data ?

• Replicability
• Are the analysis findings from models trained on the synthetic data the 

same as the findings on the real data, and are the population inferences 
on the synthetic data valid ?
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Replicability of results
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Comparing Real and Synthetic Data: 
Mortality Over Time

K. El Emam, L. Mosquera, E. Jonker, H. Sood: “Evaluating the Utility of Synthetic COVID-19 Case Data”, JAMIA Open, 14(1):ooab012, 
2021.
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Comparing Real and Synthetic Data: 
Mortality By Age
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K. El Emam, L. Mosquera, E. Jonker, H. Sood: “Evaluating the Utility of Synthetic COVID-19 Case Data”, JAMIA Open, 14(1):ooab012, 
2021.
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Longitudinal Health System 
Dataset

L. Mosquera, K. El Emam, L. Ding, V. Sharma, XH Zhang, S. Kababji, C. Carvalho, B. Hamilton, D. Palfrey, L. Kong, B. Jiang, D.T. Eurich: “A Method for Generating 
Synthetic Longitudinal Health Data”, BMC Medical Research Methodology, 23(1): 67, 2023.
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Cox Regression Results

L. Mosquera, K. El Emam, L. Ding, V. Sharma, XH Zhang, S. Kababji, C. Carvalho, B. Hamilton, D. Palfrey, L. Kong, B. Jiang, D.T. Eurich: “A Method for Generating 
Synthetic Longitudinal Health Data”, BMC Medical Research Methodology, 23(1): 67, 2023.
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Colon Cancer Clinical Trial

Azizi Z, Zheng M, Mosquera L, et al. Can synthetic data be a proxy for real clinical trial data ? A validation study. BMJ Open. 2021;11:e043497.
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Because synthesis introduces additional variation, 
this needs to be accounted for in models to get valid 
estimates
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El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.



Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute

Replication utility on eight breast 
cancer clinical trials
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Chen, W. Barlow, J. Gralow, M-F Savard, M. Clemons, K. El Emam. Evaluating the Utility and Privacy of Synthetic Breast Cancer Clinical Trial Data 
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Attribution disclosure on eight breast 
cancer clinical trial datasets
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Membership disclosure on eight 
clinical trial datasets
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Validity of population inferences
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El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.
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There is accumulating evidence that synthetic data
is a good proxy for real data, but there isn’t a single

generative model that always performs well
cc: Hc_07 - https://www.flickr.com/photos/82684220@N00
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Federated analysis using synthetic 
data - evaluation
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Z. Azizi, S. Lindner, Y. Shiba, V. Raparelli, C.M. Norris, K. Kublickiene, M.T. Herrero, A. Kautzky-Willer, P. Klimek, T. Gisinger, L. Pilote, K. El 
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Federated analysis using 
synthetic data - results
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Z. Azizi, S. Lindner, Y. Shiba, V. Raparelli, C.M. Norris, K. Kublickiene, M.T. Herrero, A. Kautzky-Willer, P. Klimek, T. Gisinger, L. Pilote, K. El 
Emam: "A comparison of synthetic data generation and federated analysis for enabling international evaluations of cardiovascular health". Sci 
Rep 13: 11540, 2023.
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Mitigating Bias
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Bias evaluation using simulations
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Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 
10.1016/j.patter.2024.100946



Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute30

Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 
10.1016/j.patter.2024.100946

Data bias has 
an impact on 
model 
parameters and 
fairness
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Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 
10.1016/j.patter.2024.100946

Synthetic data 
generation can 
mitigate low to 
medium bias 
better than 
other methods



Beyond data sharing, synthetic data can potentially help with
federated analysis, and data bias mitigation

cc: tunnelarmr - https://www.flickr.com/photos/27311060@N00



QUESTIONS
cc: an untrained eye - https://www.flickr.com/photos/26312642@N00
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