Generating and Applying Synthetic Health Data

Khaled El Emam kelemam@ehealthinformation.ca

Space Opera Theatre

DEEP FAKES

The synthetic data generation process

Common Clarifications

- The source datasets can be as small as 100 or 150 patients. We have developed generative modeling techniques that will work for small datasets.
- The source datasets can be very large then it becomes a function of compute capacity that is available.
- It is not necessary to know how the synthetic data will be analyzed to build the generative models. The generative models capture many of the patterns in the source data.

El Emam K, Mosquera L, Hoptroff R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data. Sebastopol, CA: O'Reilly Media 2020.

	AGECAT	AGELE70	WHITE	MALE	RMI
ALOC	AULCAI	AULLI/V	WITTL	WIALL	DIAII
nited States	2	1	1	1	33.75155
nited States	2	1	1	0	39.24707
nited States	1	1	1	0	26.5625
nited States	4	1	1	1	40.58273
nited States	5	0	0	1	24.42046
nited States	5	0	1	0	19.07124
nited States	3	1	1	1	26.04938
nited States	4	1	1	1	25.46939

Privacy use cases

7

Training

Attribution disclosure: find a record in the synthetic data similar to a high risk real individual <u>and</u> learn something new about that individual

Quasi-identifiers

NDC
009-0031
0023-3670
0074-5182
0078-0379
65862-403
55714-4446
55714-4402
55566-2110
55289-324
54868-6348
53808-0540

The process for a membership disclosure attack

Generative models cannot guarantee always producing data with low privacy risk, but we can measure it every time and validate risk levels

The source of th

liefenmesser

cc: Daniel Mennerich - https://www.flickr.com/photos/29858421

and and a start of the start of

Assessing the Utility of Synthetic Data

- Expert Discrimination
 - Can a clinician to tell the difference between a real and a synthetic

record?

- Fidelity
 - How similar the joint distribution of the synthetic data is to the joint distribution of the real data?

Replicability

 Are the analysis findings from models trained on the synthetic data the same as the findings on the real data, and are the population inferences on the synthetic data valid ?

Replicability of results

Comparing Real and Synthetic Data: Mortality Over Time

K. El Emam, L. Mosquera, E. Jonker, H. Sood: "Evaluating the Utility of Synthetic COVID-19 Case Data", JAMIA Open, 14(1):ooab012, 2021.

Comparing Real and Synthetic Data: Mortality By Age

K. El Emam, L. Mosquera, E. Jonker, H. Sood: "Evaluating the Utility of Synthetic COVID-19 Case Data", JAMIA Open, 14(1):ooab012, 2021.

Longitudinal Health System Dataset

L. Mosquera, K. El Emam, L. Ding, V. Sharma, XH Zhang, S. Kababji, C. Carvalho, B. Hamilton, D. Palfrey, L. Kong, B. Jiang, D.T. Eurich: "A Method for Generating Synthetic Longitudinal Health Data", BMC Medical Research Methodology, 23(1): 67, 2023.

S	
lity index w-up	

Hospital Admissions

Diagnostic code Resource intensity weight Length of stay Relative date of admission

Laboratory Tests

Test name Test result Relative date of test

Cox Regression Results

L. Mosquera, K. El Emam, L. Ding, V. Sharma, XH Zhang, S. Kababji, C. Carvalho, B. Hamilton, D. Palfrey, L. Kong, B. Jiang, D.T. Eurich: "A Method for Generating Synthetic Longitudinal Health Data", BMC Medical Research Methodology, 23(1): 67, 2023.

Colon Cancer Clinical Trial

HR: Analysis for Overall Survival

Source Real

Synthetic

HR

Azizi Z, Zheng M, Mosquera L, et al. Can synthetic data be a proxy for real clinical trial data? A validation study. BMJ Open. 2021;11:e043497.

CI Overlap

 55%
64%
94%
95%
61%
34%
51%
88%
86%
99%
88%

Because synthesis introduces additional variation, this needs to be accounted for in models to get valid estimates

El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.

18

Combining Rules Analysis Results

Replication utility on eight breast cancer clinical trials

		SEQ GAN				VAE				
Data Set	Sample Size	Estimate Agreement	Decision Agreement	CI Overlap	Estimate Agreement	Decision Agreement	CI Overlap	Estimate Agreement	Decision Agreement	CI Overlap
REaCT-HER2+	48	1	1	0.77	1	1	0.88	1	1	0.94
REaCT-G/G2	401	1	1	0.91	а	а	а	1	1	0.67
REaCT-ILIAD	218	1	1	0.99	1	1	0.85	1	0	0.74
REaCT-ZOL	211	1	b	0.98	1	b	0.88	0	b	0.61
REaCT-BTA	230	1	1	0.85	1	0	0.68	1	0	0.72
CCTG MA27	7,576	1	1	0.90	1	1	0.62	1	1	0.82
SWOG 0307	6,097	1	1	0.93	1	0	0.50	1	1	0.95
NSABP B34	3,323	1	1	0.93	1	1	0.83	1	1	0.61

Abbreviations: BTAs, bone-targeted agents; CCTG, Canadian Cancer Trials Group; GAN, generative adversarial network; HER2, human epidermal growth factor receptor 2; NSABP, National Surgical Adjuvant Breast and Bowel Project; REaCT, Rethinking Clinical Trials; SEQ, sequential analysis; SWOG, Southwest Oncology Group; VAE, variational autoencoder.

^aTraining the generative model failed.

^bThe analysis is descriptive and hence decision agreement does not apply.

S. El Kababji, N. Mitsakakis, X. Fang, A.Beltran-Bless, G. Pond, L. Vandermeer, D. Radhakrishnan, L. Mosquera, A. Paterson, L. Shepherd, B. Chen, W. Barlow, J. Gralow, M-F Savard, M. Clemons, K. El Emam. Evaluating the Utility and Privacy of Synthetic Breast Cancer Clinical Trial Data Sets. JCO Clin Cancer Inform. 2023;e2300116

Attribution disclosure on eight breast cancer clinical trial datasets

SEQ		GAN		VAE		
Maximum Risk	Risk	Maximum Risk	Risk	Maximum Risk	Risk	
2.56E-04	LO	2.35E-04	LO	2.35E-04	LO	
1.10E-04	LO	1.10E-04	LO	1.10E-04	LO	
2.90E-05	LO	2.90E-05	LO	2.90E-05	LO	
1.58E-03	LO	1.41E-03	LO	1.10E-03	LO	
6.48E-04	LO	6.43E-04	LO	6.43E-04	LO	
1.37E-03	LO	1.37E-03	LO	1.38E-03	LO	
2.09E-03	LO	2.17E-03	LO	2.02E-03	LO	
2.25E-02	LO	2.02E-02	LO	1.83E-02	LO	
	SEQ Maximum Risk 2.56E-04 1.10E-04 2.90E-05 1.58E-03 6.48E-04 1.37E-03 2.09E-05 2.25E-02	SEQ Maximum Risk Risk 2.56E-04 LO 1.10E-04 LO 2.90E-05 LO 1.58E-03 LO 6.48E-04 LO 1.37E-03 LO 2.09E-05 LO 1.37E-03 LO 2.09E-03 LO 2.25E-02 LO	SEQ GAN Maximum Risk Risk Maximum Risk 2.56E-04 L0 2.35E-04 1.10E-04 L0 1.10E-04 2.90E-05 L0 2.90E-05 1.58E-03 L0 1.41E-03 6.48E-04 L0 6.43E-04 1.37E-03 L0 1.37E-03 2.09E-05 L0 2.17E-03 2.09E-03 L0 2.17E-03	SEQ GAN Maximum Risk Risk Maximum Risk Risk 2.56E-04 LO 2.35E-04 LO 1.10E-04 LO 1.10E-04 LO 2.90E-05 LO 2.90E-05 LO 1.58E-03 LO 1.41E-03 LO 6.48E-04 LO 6.43E-04 LO 1.37E-03 LO 1.37E-03 LO 2.09E-05 LO 2.17E-03 LO	SEQ GAN VAE Maximum Risk Risk Maximum Risk Risk Maximum Risk 2.56E-04 L0 2.35E-04 L0 2.35E-04 1.10E-04 L0 1.10E-04 L0 1.10E-04 2.90E-05 L0 2.90E-05 L0 2.90E-05 1.58E-03 L0 1.41E-03 L0 1.10E-03 6.48E-04 L0 6.43E-04 L0 6.43E-04 1.37E-03 L0 1.37E-03 L0 1.38E-03 2.09E-05 L0 2.02E-02 L0 1.38E-03	

Abbreviations: BTAs, bone-targeted agents; CCTG, Canadian Cancer Trials Group; GAN, generative adversarial network; HER2, human epidermal growth factor receptor 2; LO, low risk; NSABP, National Surgical Adjuvant Breast and Bowel Project; REaCT, Rethinking Clinical Trials; SEQ, sequential analysis; SWOG, Southwest Oncology Group; VAE, variational autoencoder.

S. El Kababji, N. Mitsakakis, X. Fang, A.Beltran-Bless, G. Pond, L. Vandermeer, D. Radhakrishnan, L. Mosquera, A. Paterson, L. Shepherd, B. Chen, W. Barlow, J. Gralow, M-F Savard, M. Clemons, K. El Emam. Evaluating the Utility and Privacy of Synthetic Breast Cancer Clinical Trial Data Sets. JCO Clin Cancer Inform. 2023;e2300116

Membership disclosure on eight clinical trial datasets

		SE	SEQ		N	VAE	
Data Set	n/N (sampling fraction)	F_rel	Risk	F_rel	Risk	F_rel	Risk
REaCT-HER2+	0.021	0.15	LO	0.07	LO	0.09	LO
REaCT-G/G2	0.062	0.06	LO	0.06	LO	0.06	LO
REaCT-ILIAD	0.004	0.02	LO	0.02	LO	0.02	LO
REaCT-ZOL	0.023	0.02	LO	0.02	LO	0.02	LO
REaCT-BTA	0.207	0.13	LO	0.18	LO	0.18	LO
CCTG MA27	0.573	0.31	HI	0.32	HI	0.34	HI
SWOG 0307	0.147	0.13	LO	0.13	LO	0.13	LO
NSABP B34	0.158	-0.02	LO	-0.15	LO	-0.19	LO

NOTE. The threshold for the sampling fraction is 0.33, and 0.2 for the relative F1 score (F_rel). Abbreviations: BTAs, bone-targeted agents; CCTG, Canadian Cancer Trials Group; GAN, generative adversarial network; HER2, human epidermal growth factor receptor 2; HI, high risk; LO, low risk; NSABP, National Surgical Adjuvant Breast and Bowel Project; REaCT, Rethinking Clinical Trials; SEQ, sequential analysis; SWOG, Southwest Oncology Group; VAE, variational autoencoder.

S. El Kababji, N. Mitsakakis, X. Fang, A.Beltran-Bless, G. Pond, L. Vandermeer, D. Radhakrishnan, L. Mosquera, A. Paterson, L. Shepherd, B. Chen, W. Barlow, J. Gralow, M-F Savard, M. Clemons, K. El Emam. Evaluating the Utility and Privacy of Synthetic Breast Cancer Clinical Trial Data Sets. JCO Clin Cancer Inform. 2023;e2300116

Validity of population inferences

El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.

Sample statistic

El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.

El Emam K, Mosquera L, Fang X, et al. An evaluation of the replicability of analyses using synthetic health data. Sci Rep. 2024;14:6978.

There is accumulating evidence that synthetic data is a good proxy for real data, but there isn't a single generative model that always performs well

Solerny offer and -

- BURISTA

Joon Quars of Children un

Federated analysis using synthetic data - evaluation

Z. Azizi, S. Lindner, Y. Shiba, V. Raparelli, C.M. Norris, K. Kublickiene, M.T. Herrero, A. Kautzky-Willer, P. Klimek, T. Gisinger, L. Pilote, K. El Emam: "A comparison of synthetic data generation and federated analysis for enabling international evaluations of cardiovascular health". Sci Rep 13: 11540, 2023.

Federated analysis using synthetic data - results

	Federated analysis	Pooled analysis	
CANHEART score**	Regression coeff ***	Regression coeff***	
Sex (ref: male)	0.25 (0.23, 0.26)*	0.24 (0.23, 0.25)*	
Education	0.04 (0.04, 0.05)*	0.04 (0.04, 0.05)*	
Marital status (ref: Single)			
Divorced/widowed	-0.12 (-0.14, -0.09)*	-0.11 (-0.14, -0.09)*	
Married	-0.15 (-0.17, -0.13)*	-0.16 (-0.18, -0.14)*	
Household size	0.05 (0.04, 0.06)*	0.06 (0.05, 0.06)*	
House income (reverse coded)	-0.08 (-0.09, -0.07)*	-0.09 (-0.10, -0.08)*	
Immigrant(ref: No)	0.13 (0.12, 0.15)*	0.14 (0.13, 0.16)*	
Age	-0.13 (-0.14, -0.13)*	-0.14 (-0.14, -0.13)*	
Country (ref: CA)	-0.01 (-0.03, 0.002)	-0.02 (-0.04, 0.00)	
\mathbb{R}^2	0.163	0.165	

Z. Azizi, S. Lindner, Y. Shiba, V. Raparelli, C.M. Norris, K. Kublickiene, M.T. Herrero, A. Kautzky-Willer, P. Klimek, T. Gisinger, L. Pilote, K. El Emam: "A comparison of synthetic data generation and federated analysis for enabling international evaluations of cardiovascular health". Sci Rep 13: 11540, 2023.

Mitigating Bias

SMA approach

Bias evaluation using simulations

Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 10.1016/j.patter.2024.100946

Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 10.1016/j.patter.2024.100946

Data bias has an impact on model parameters and fairness

Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. doi: 10.1016/j.patter.2024.100946

Synthetic data generation can mitigate low to medium bias better than other methods

Beyond data sharing, synthetic data can potentially help with federated analysis, and data bias mitigation

cc: tunnelarmr - https://www.flickr.com/photos/27311060@N0

