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Model Formulation �

Evaluating Predictors of Geographic Area Population Size
Cut-offs to Manage Re-identification Risk

KHALED EL EMAM, ANN BROWN, PHILIP ABDELMALIK

A b s t r a c t Objective: In public health and health services research, the inclusion of geographic information
in data sets is critical. Because of concerns over the re-identification of patients, data from small geographic areas
are either suppressed or the geographic areas are aggregated into larger ones. Our objective is to estimate the
population size cut-off at which a geographic area is sufficiently large so that no data suppression or further
aggregation is necessary.

Design: The 2001 Canadian census data were used to conduct a simulation to model the relationship between
geographic area population size and uniqueness for some common demographic variables. Cut-offs were computed for
geographic area population size, and prediction models were developed to estimate the appropriate cut-offs.

Measurements: Re-identification risk was measured using uniqueness. Geographic area population size cut-offs
were estimated using the maximum number of possible values in the data set and a traditional entropy measure.

Results: The model that predicted population cut-offs using the maximum number of possible values in the data
set had R2 values around 0.9, and relative error of prediction less than 0.02 across all regions of Canada. The
models were then applied to assess the appropriate geographic area size for the prescription records provided by
retail and hospital pharmacies to commercial research and analysis firms.

Conclusions: To manage re-identification risk, the prediction models can be used by public health professionals, health
researchers, and research ethics boards to decide when the geographic area population size is sufficiently large.
� J Am Med Inform Assoc. 2009;16:256–266. DOI 10.1197/jamia.M2902.
Introduction
Privacy legislation in Canada applies to identifiable infor-
mation. This means that if health information is deemed
sufficiently de-identified, then there is no legislative require-
ment to obtain consent from patients to collect it and use it.1

In addition, Research Ethics Boards (REBs) are more likely to
waive the consent requirement if the information collected
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for research is deemed de-identified.2 The option to waive
consent is important as there is evidence that currently used
methods for obtaining opt-in consent can result in low
recruitment and selection bias in health research.3–10 The
ability to make precise claims about identifiability therefore
is needed to inform this consent waiver decision.

It is obvious that variables such as name and address would
have to be removed, or not collected to start off with, to
de-identify a data set. However, beyond the elimination of
such variables, the definition of identifiability is often vague
and remains an active area of research.11

The inclusion of geographic information (geocoding) in
health data sets is critical for public health investigations
and health services research.12–17 However, the inclusion of
geographic details in a data set also makes it much easier to
re-identify patients.18,19 The more specific the geographic
detail included, the easier it is to use the other variables/
information in the data to uniquely identify an individual. In
fact, recently the federal court accepted evidence that the
inclusion of the “Province” field in Health Canada’s adverse
drug events database can potentially re-identify individu-
als.20 Therefore, the province where the adverse event
occurred cannot be disclosed by Health Canada in response
to an access to information request. It has also been shown
that patient addresses can be re-identified from published
maps.21–23 Consequently, there is a risk that geographic
detail in health data sets makes Canadians identifiable.

To protect privacy one can mask geocodes,24,25 or control
geographic area population size (GAPS) to minimize the risk

of re-identification. Due to its relative simplicity, controlling
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GAPS has been adopted widely in practice. Controlling
GAPS means either that data about individuals living in
areas with small populations are suppressed, or that areas
with small populations are aggregated into larger ones.
Suppression results in the direct loss of data, and aggrega-
tion reduces the utility of a data set.26–28 This is justified
because of the demonstrated empirical relationship between
GAPS and re-identification risk29–31: re-identification risk
tends to be higher in areas with smaller populations.

Examples of GAPS cut-off use include the United States
Health Insurance Portability and Accountability Act
(HIPAA) Privacy Rule. The HIPAA Privacy Rule defines 18
variables in the Safe Harbor List that need to be removed or
generalized to ensure that a data set is de-identified. One of
these 18 items stipulates that the first three numbers of the
ZIP code can be collected/disclosed if the population living
within that geographic area is greater than 20,000 people.
The US Bureau of the Census has a 100,000 GAPS cut-off for
releasing public use microdata files.32–34 That same cut-off is
used for making disclosure control decisions with public
health data sets.35,36 Only data from areas with a population
of 120,000 or more are released as microdata from the British
census.37 Similarly, Statistics Canada uses a 70,000 popula-
tion size cut-off for health regions to control the risk of
disclosure when releasing data from the Canadian Commu-
nity Health Survey (CCHS).38 It has been suggested that
different GAPS cut-offs should be applied depending on the
user, with a 25,000 cut-off for data disclosed to researchers,
and a 100,000 cut-off for data disclosed to the public.39

The dearth of evidence supporting the specific cut-offs that
are used in practice, and the “real research need to develop
empirical evidence to justify recommendations regarding
geographic specificity”19 make the continued search for
GAPS cut-offs important. Furthermore, existing GAPS cut-
offs do not account for the fact that a cut-off is inherently
dependent on the number and nature of the variables under
consideration.31,40 For example, the cut-off to apply when
one has two variables will be smaller than a cut-off to apply
when there are 15 variables. When the variables have few
response categories, the cut-off will be smaller than when
they have many response categories. Therefore, many GAPS
cut-offs in current use (summarized above), may be over-
protecting data sets or not protecting them enough depend-
ing on the specific variables in question.

The purpose of our study is to provide an empirically
grounded basis for using GAPS cut-offs. The primary contri-
butions of this work are to (a) provide models for predicting
the GAPS cut-offs that explicitly account for re-identification
risk and the variable characteristics based on two simple
metrics: the number of possible combinations of data fields and
entropy, (b) validating these models using Canadian census
data, and (c) demonstrating their applicability with two exam-
ples of pharmacy prescription data.

Methods
Definitions and Preliminaries

Quasi-identifiers
When considering re-identification risk, we are only inter-
ested in a subset of variables in a data set.41 These are called

the quasi-identifiers.42 They are variables that make individ-
uals unique in the population and are possibly publicly
known. Therefore, they do not directly identify an individ-
ual, but can be used for indirect re-identification. While
there is no universal definition of what constitutes a quasi-
identifier, there are some quasi-identifiers that have been
studied more extensively than others such as gender, date of
birth, ethnicity, income, years of education, and geocodes. In
addition, quasi-identifiers may differ across data sets. For
example, gender will not be a meaningful quasi-identifier if
all of the individuals in a data set are female. Lastly, in this
study, the quasi-identifiers that are assessed have a finite set
of possible discrete values.

Uniqueness as a Measure of Re-identification Risk
We define a unique individual as the one individual with
specific values on the quasi-identifiers in a particular geo-
graphic area. For example, if there is only one 95-year-old
male in a postal code, then that individual is unique within
that postal code. The uniqueness of individuals is often used
as a surrogate measure for re-identification risk: unique
records in a data set are more likely to be re-identified by an
intruder than non-unique records.43 We therefore use
uniqueness as our measure of re-identification risk.

Nested Geographic Areas
Geographic area aggregation implies a nesting relationship
among those areas. For example, if we decide that re-
identification risk is too high when we geocode using full
postal codes, then we can aggregate the geographic area to
Forward Sortation Areas (FSA), which are the first three
characters of the postal code. Postal codes are nested within
FSAs.

Determining the GAPS Cut-offs
Geographic areas can be measured in terms of the physical
area or population size. In this paper we refer only to the
population size of the geographic area.

Previous research has identified two characteristics of the
relationship between uniqueness and GAPS:29–31

• Uniqueness in a data set is inversely proportional to the
population size of the geographic area. This means that
the proportion of unique individuals in a large area will
be smaller than in a nested smaller area. As smaller areas
are aggregated into larger areas, the proportion of
uniques goes down (see Fig 1).

• Once GAPS reaches a certain point, uniqueness tends to
plateau. This trend applies irrespective of the quasi-
identifiers in question.

A case has been made that the 100,000 GAPS cut-off used by
the Census Bureau is justified by computing the uniqueness
plateau noted above (i.e., the point at which uniqueness no
longer changes).29 The rationale is that increasing the size of
the geographic area any further has little impact on unique-
ness, and hence little impact on re-identification risk.29–31

For example, if the uniqueness plateau is reached at 100,000
then this means the re-identification risk changes insignifi-
cantly between 100,000 and 110,000. Therefore, there is no
disclosure control benefit in increasing the size of the
geographic region or of aggregation beyond 100,000, and a
reasonable cut-off would be 100,000.

In our analysis we build on a methodology used in a previous

study at the Census Bureau29,31 and proceed as follows:
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• Define a quasi-identifier model as a specific quasi-iden-
tifier or combination of quasi-identifiers and evaluate its
uniqueness.

• Plot uniqueness against GAPS and compute the cut-off
point as the point where the derivative approaches zero
(illustrated in Fig 1).

Let the geographic areas under consideration be indexed by
1..K, and their population size denoted by Si where i:1..K.
The area indexed by i is nested within the area indexed by
i�1. Consequently, we also have Si � Si�1 for all i. We
denote the percentage of individuals on a particular quasi-
identifier model that are unique in an area i by U(Si).
Because of the monotonically decreasing relationship be-
tween GAPS and uniqueness, we expect the following
relationship to hold: U(Si) � U(Si�1). The GAPS cut-off was
then defined as the value of Si where the approximate
derivative, the change in the percentage of uniques, is close
to zero31:

GAPS _ CUTOFF � Si���U�Si� � U�Si�1��
�Si�1 � Si�

� 0� (1)

This approach, however, may identify local plateaus where
the uniqueness remains temporarily steady, followed by a
more substantial decrease to reach the asymptotic value. To
address this we adopted a model building approach where
the uniqueness function is defined as U(Si) � �0 � Si

�
1, where

the �0 and �1 are estimated using ordinary least squares
regression. We then take the derivative of this function and
compute the cut-off as the size value where the derivative
approaches zero:

GAPS _ CUTOFF � Si���0 � �1 � Si
��1�1� � 0� (2)

The cut-off values were computed separately for central
Canada (which includes Ontario and Quebec), western
Canada (which includes all territories and provinces west of
Ontario), and eastern Canada (which includes all provinces
east of Quebec).

Data Source
The data set used for our study is the 2001 Canadian census

F i g u r e 1. Illustration of how the GAPS cutoff is calculate
are unique on the values of the quasi-identifiers. For exampl
on age, ethnicity, and gender means that 200 individuals ha
the limit, with an infinitely sized area, the uniqueness appro
value.
Public Use Microdata File (PUMF) made available by Statis-
tics Canada.44 The PUMF represents approximately 2.7% of
the Canadian population. The variable subset that is ana-
lyzed is shown in Table 1. These are common demographics
that are often available in health data sets. There are 10
quasi-identifiers. These variables were selected because they
can be used to link with other databases, because they
describe attributes which are visible on individuals, or
because they describe attributes which would make individ-
uals easily identifiable.41

Disclosure control was already applied to the PUMF by
Statistics Canada. The specifics that are relevant to this study
consist of: (a) suppression for some variables for the Eastern
region of Canada, and (b) the age variable was top coded at
85 years. As a result, there were three variables in the
Eastern region, as seen in Table 1, which corresponded to
variables in the West and Central regions but with a smaller
number of response categories, where these response cate-
gories were coarsened.

Quasi-identifier Models
A quasi-identifier model consists of one or more quasi-
identifiers (qids). To manage the scope, we only consider
combinations of up to five quasi-identifiers.

There are some similarities among the ethnicity related
variables, and therefore they were treated as a group:
variables ETHNICRA, HLNPA, RELIGRPA, VISMINP.
Whenever the ethnicity variable appears in a model it was
replaced by one of the above individual variables. Each
substitution represented a different model. This gives 7
distinct qids: sex, age, ethnicity, schooling, marital status,
total income, and aboriginal identity.

Categorizing the 7 distinct qids by their sensitivity and
availability to an intruder gives the following two types:

• Easily used and available for re-identification: sex and
age

• Possibly usable for re-identification/sensitive: ethnicity,
schooling, marital status, total income, and aboriginal

iqueness is computed as the proportion of individuals who
iqueness of 0.02 for a geographic area of 10,000 individuals

ique values on the combination of these three variables. At
zero. The delta value is the uniqueness at the GAPS cutoff
d. Un
e, a un
ve un
aches
identity
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The value for Cr
n gives the number of possible combinations

of size r from a larger group of size n. The different models
will be defined by the number of qids in the model with both
age and gender being included in each model. That is,
models containing:

• 5 qids: have age and gender and 10 combinations of 3 of
the 5 sensitive qids.

• 4 qids: have age and gender and 10 combinations of 2 of
the 5 sensitive qids.

• 3 qids: have age and gender and each of the 5 sensitive
qids.

• 2 qids: have age and gender only—there is only one
model.

This gives 26 models for the 7 distinct qids. Substituting each
of home language, religion and visible minority for ethnicity
then gives us 18 (3 � 6) models for 5 qids (ethnicity appears
in 6 of the 10 models), 12 (3 � 4) models for 4 qids (ethnicity
appears in 4 of the 10 models), and 3 (1 � 3) models for 3
qids. The subtotal for this group is 59 models.

We repeated the above process by using each one of age or
gender in combination with the sensitive qids. That is,
models containing:

• 5 qids: have age and 5 combinations of 4 of the 5 sensitive
qids.

• 4 qids: have age and 10 combinations of 3 of the 5
sensitive qids.

• 3 qids: have age and 10 combinations of 2 of the 5
sensitive qids.

• 2 qids: have age and each of the 5 sensitive qids only.

This gives 30 models. Similarly to the previous group, by
taking into account the ethnicity related variables gives a
subtotal for this group of 75 models. For the last group, age
is replaced with gender for an additional 75 models.

Therefore, in total we tested 209 different quasi-identifier
models.

Varying Region Size
We performed a simulation following the nested sampling
method described by Greenberg and Voshell.30,31 We took a
simple random sample of 200,000 individuals from western

Table 1 y Quasi-identifiers to be Included in the Mode

Variable Name in the Census File Definition

SEXP sex
AGEP single years of age from 0 to
HLNPA language: the language spok

home by the individual
ETHNICRA ethnic or cultural group to w

respondent’s ancestors be
ABSRP aboriginal identity
TOTSCHP total years of schooling
MARST marital status (legal)
RELIGRPA religious denomination
TOTINCP total income: we defined cat

income in $ 15-K intervals
VISMINP visible minority

*The Number of response categories excludes nonspecific response
Canada, 200,000 from central Canada, and 60,000 from
eastern Canada. For each of these three regions of Canada,
we varied the size of the region by randomly removing
individuals in 5,000 decrements. For example, for central
Canada, we started with a random sample of 200,000 indi-
viduals, then a subsample of 195,000 was randomly selected,
and then another subsample with 190,000 individuals, and
so on. For each subsample we computed the proportion of
unique records on each of the 209 quasi-identifier models
described above. The cut-off was selected when the deriva-
tive was less than 0.001 using Eq (2).

This simulation approach has been shown to produce results
that are quite similar to using actual contiguous areas (e.g.,
Census Tracts).30,31 Furthermore, it has been argued that this
simulation approach ensures that the results are controlled,
replicable, and generalizable.31

When computing the cut-off using the derivative (Eq 2), the
potential cut-offs were evaluated only within the GAPS range
in our data set (i.e., 5–200 k for western and central Canada,
and 5–60 k for eastern Canada) to ensure that we did not
extrapolate beyond the original data used to build the models.

Predicting the GAPS Cut-off
We developed a prediction model to have the results of the
simulation be more practical for an end-user, such as a
privacy analyst or epidemiologist, to calculate the GAPS
cut-off for their particular study or data set. As noted earlier,
we expected that a cut-off is related to the quasi-identifiers
that are being considered. The following are two traditional
ways used to characterize the quasi-identifiers:

Entropy. A previous study formulated an entropy measure
that captures the dispersion in the quasi-identifiers.31 This was
found to be strongly related to uniqueness within a region. We
computed the standard information theoretical entropy mea-
sure from the full samples using � 	k�1

L tk ��k�N� � log
�k�N� where tk is the number of equivalence classes of size k,
L is the size of the largest equivalence class, and N the total
number of records in the sample. An equivalence class is
defined as a possible value on the quasi-identifiers, for exam-
ple, “50 year old male” is an equivalence class. We found that
entropy computed from sub-samples were very strongly cor-
related, therefore, they produce similar results as full sample

the Three Regions of Canada
Number Response Categories*

Western and Central Canada Eastern Canada

2 2
� 86 86
st often at 14 4

41 26

4 4
9 9
5 5

11 3
s of total 11 11

4 4

as missing value, not available, or “other”.
ls for

84, 85
en mo

hich
long

egorie
entropy.
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MaxCombs. The maximum number of possible different
values for the quasi-identifiers. For example, if we have two
quasi-identifiers, say, age and gender, and assume that age
has 86 possible values and gender has 2 values, 86 � 2 � 172
is the maximum number of different possible combinations
of values for these two quasi-identifiers. It is expected that
the greater the maximum number of combinations the more
uniques will be in a data set.31

We constructed two prediction models, each with a single
independent variable: Entropy, or MaxCombs. An exam-
ination of the data indicated an obvious logarithmic
relationship between each of these variables and the GAPS
cut-off, giving us the following two linear models: log
(GAPS_CUTOFF) � �0 � �1log (Entropy) and log (GAPS_
CUTOFF) � �0 � �1log (MaxCombs). For each of the two
prediction models we had 209 observations representing the
quasi-identifier models.

The GAPS cut-off value is truncated from below at 5,000
because that is the smallest subsample that was selected.
It is also truncated at the top at 200,000 for central and
western Canada, and 60,000 for eastern Canada because
that was the size of the total sample that we used. Neither
Entropy nor MaxCombs is truncated. A suitable modeling
technique for such a censored data set is Tobit regres-
sion.45– 47

Let y denote the actual value of the GAPS cut-off, the point
at which the approximate derivative is close to zero, pro-
duced during our simulations. We have y � c1 and y 	 c2,
where c1 and c2 are the bottom and top truncation threshold
values respectively. Also, let there be an underlying latent
variable y∗ of which y is the realized observation, such that
yi

∗ � xi� � 
i, where xi is a matrix with the first column equal
to 1 and the second value is the independent variable we are
using to predict the GAPS cut-off, � is a vector of parame-
ters, and 
i are independent and normally distributed errors
with zero mean and constant variance. The latent variable is
the value that we would expect to observe if there was no
censoring.

The Tobit model takes the form:

yi � yi
∗ if c1 	 yi

∗ 	 c2

yi � c1 if c1 � yi
∗

yi � c2 if c2 � yi
∗

Maximum likelihood estimators were computed using SAS
version 9.1 (proc LIFEREG).

To determine the goodness of fit of the models, we used the
pseudo-R2 of McKelvey and Zavoina,48 which was shown to
be valid for the Tobit model.49 A Monte Carlo simulation
compared different pseudo-R2 measures for the Tobit model
and found this one to be the best,50 with the main criterion
being equivalence to the R2 measure that would be obtained
using ordinary least squares regression if there was no
censoring in the data.

Validation of GAPS Cut-off Predictions Models
To validate the GAPS cut-off values that we used, the delta
score was computed for each of the three regions of Canada.
This score indicates how far the uniqueness at the GAPS
cut-off was from the asymptotic value. Small values of the

delta score indicate that uniqueness is close to zero, and that
any additional geographic area aggregation would have an
insignificant impact on uniqueness.

An end-user can enter either the Entropy or MaxCombs values
in the Tobit models to predict the GAPS cut-off value for their
study. To validate the accuracy of the prediction models, we
used the Tobit models to predict the GAPS cut-off using
10-fold cross-validation.51,52 That is, we divided the data sets
into deciles and used one decile in turn for validation, and the
remaining nine deciles to build the model.

The predicted cut-off used for validation was the uncondi-
tional value of the realized variable y� —the full equation for
this estimate is provided in the literature.45–47 Using y� in the
validation ensured that the predicted value was also cen-
sored. The quality of the prediction was evaluated by
considering the median and trimmed mean of the error
(y�y� ) and the relative error, defined as (y�y� )/y.

Applying the Prediction Models
Since an end-user does not need to worry about censoring
(which is an artifact of our simulation), the predicted value
of the latent variable would be used instead, y� *. This is given
by y� * � e�0Entropy�1 or y� * � e�0MaxCombs�1 where �0 and �1

are the model parameter estimates.

After presenting the results in the next section, the
application of the prediction models in several real exam-
ples pertaining to the disclosure of retail and hospital
pharmacy data to commercial data aggregators is illus-
trated in the discussion.

Results
An example of the relationship between GAPS and propor-
tion uniqueness is shown in Fig 2. A similar pattern was
observed for all regions and variable combinations. As
illustrated in Fig 1, the cut-off was calculated from such a

F i g u r e 2. Example showing the actual relationship be-
tween geographic area size and proportion uniques in the
central region for the three variables: age, gender, and

ethnicity.
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graph by fitting a model and taking its derivative. The
cut-off values were then used to develop the prediction
models, as described in the previous section.

Table 2 shows the delta scores, which indicate how far unique-
ness was from the asymptotic value at the various GAPS
cut-offs that were calculated. As can be seen, there is very little
difference in uniqueness across the regions, suggesting that
there is little disclosure control benefit in increasing area sizes
beyond the cut-offs that were calculated.

In Tables 3 and 4 we show the model parameters and diag-
nostics to predict the GAPS cut-off as a function of Entropy and
MaxCombs, respectively. As is clear, all of the parameters are
statistically significant, and the goodness of fit is high.

For both the Entropy and MaxCombs prediction models, the
prediction errors are quite small. While the MaxCombs models
have a slightly higher goodness-of-fit than the entropy models,
the accuracy of the prediction for both are very similar.

Discussion
The results suggest that the three regional models we have
constructed for predicting the GAPS cut-off from both the
Entropy and MaxCombs values can be quite accurate. They
also make clear that having a single GAPS cut-off would be
a serious oversimplification and that the appropriate cut-off

Table 2 y Table Showing the Delta Scores for the
Three Regions. The Delta Score Represents the
Proportion of Uniques at the Computed
Geographical Area Population Size (GAPS) Cutoff
Value. For Example, 0.0036 of the Individuals in
Western Canada Were Unique at the GAPS Cutoff
(median value)

West Central East

Trimmed mean 0.007 0.0068 0.0061
Median 0.0036 0.0033 0.0037

Table 3 y Tobit Model Results for the Three Canadian
Expressed in Terms of the Prediction Error and Relat
Entropy Prediction Model (Western)

Pseudo-R2

Intercept
Log (entropy) parameter est.
Prediction error (10-fold)

Trimmed mean �4,433
Median �1,500

Entropy Prediction Model (Central)
Pseudo-R2

Intercept
Log (entropy) parameter est.
Prediction error (10-fold)

Trimmed mean �1,218
Median �7,405

Entropy Prediction Model (Eastern)
Pseudo-R2

Intercept
Log (entropy) parameter est.
Prediction error (10-fold)

Trimmed mean �1,284

Median �524
is a function of the quasi-identifiers that will be collected and
the region of Canada.

Geographic areas that are larger than the GAPS cut-off
represent low re-identification risk since they are close to the
asymptotic risk value of zero, and there is also no disclosure
control benefit in aggregating areas beyond the cut-off.

The prediction accuracy results were similar for MaxCombs
and Entropy. One would expect Entropy to perform better
given that it represents more information about the data
distribution. However, there may be a ceiling effect in that
the accuracy for either variable is sufficiently high that it is
difficult for Entropy to outperform MaxCombs.

In practice, the MaxCombs value is easier to compute than
the Entropy value. It is also possible to compute MaxCombs
at the outset of a study during the design phase before any
data are collected. We therefore recommend using the
MaxCombs results in practice since in terms of accuracy they
are very comparable to the Entropy results.

To apply these results an analyst first needs to compute the
maximum number of combinations for the quasi-identifiers
in the data set. Once this MaxCombs value is determined,
the prediction models in Table 5 can be used to compute the
GAPS cut-off. If the cut-off is deemed too large then the
analyst can look at ways to reduce the value of MaxCombs
by collapsing or coarsening the response categories. This
process can be repeated until the cut-off is sensible for the
particular study.

Applying the Results
The following disclosure control example is about the re-
identification of patients from their prescription records—it
illustrates the application of our results. Many retail and
hospital pharmacies across Canada provide prescription
data to commercial data aggregators (we will refer to these
data as “prescription records”). Prescription records are
used to produce reports on physician prescription patterns

onal Models Using Entropy and Validation Accuracy
ediction Error

0.89
6.3; p � 0.0001
2.8; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean 0.012
Median �0.02

0.8
6.5; p � 0.0001
2.6; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean �0.015
Median 0.019

0.9
7.0; p � 0.0001
1.8; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean 0.0024
Regi
ive Pr
Median �0.019
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and drug use53 These reports are then sold primarily to the
pharmaceutical industry and government agencies.

In practice, the prescription records provided to commercial
data aggregators do not contain directly identifying infor-
mation about the patients (e.g., patient names and telephone
numbers). However, it has been argued that the patient
information that is disclosed in such records can still re-identify
patients,54,55 and that this possible re-identification jeopardizes
the confidentiality of Canadians’ health information.54

The relevant quasi-identifiers in the prescription record are
summarized in Table 6. We relied on five sources to con-
struct this table: (1) the Canadian Pharmacists Association
(CPhA) Pharmacy Claim Standard which defines all fields in
the pharmacy electronic record used for claims adjudica-
tion,56 (2) a report provided to us on the variables collected
by the data management group at IMS Health Canada Inc,
one of the largest commercial data aggregators in Canada,57

(3) the investigation report by the Office of the Information
and Privacy Commissioner of Alberta (OIPCA) which listed
the 37 fields that are collected by commercial data aggrega-
tors,58 (4) the results of a survey of provincial pharmacy
regulatory authorities,54 and (5) a specification of the data
collected by Brogan Inc from Canadian hospital pharmacies
(Brogan is another large commercial data aggregator in
Canada).59

Key variables that are disclosed pertaining directly to pa-
tients are gender and year of birth.

Table 4 y Tobit Model Results Using MaxCombs for th
Expressed in Terms of the Prediction Error and Relat
MaxCombs Prediction Model (Western)

Pseudo-R2

Intercept
Log (MaxCombs) parameter est.
Prediction error (10-fold)

Trimmed mean �2,175
Median �1,325

MaxCombs Prediction Model (Central)
Pseudo-R2

Intercept
Log (MaxCombs) parameter est.
Prediction error (10-fold)

Trimmed mean �2,472
Median �1,156

MaxCombs Prediction Model (Eastern)
Pseudo-R2

Intercept
Log (MaxCombs) parameter est.
Prediction error (10-fold)

Trimmed mean �920
Median �445

Table 5 y Prediction Models to Use for Determining
the Smallest Region Size Using MaxCombs
Region of Canada GAPS Cut-off

Western 1588�MaxCombs0.42

Central 1436�MaxCombs0.43

Eastern 1978�MaxCombs0.304
GAPS � geographical area population size.
Brogan also collects the patient FSA, but IMS Health does
not do so directly. However, it is often possible to infer new
information about individuals from variables that already
exist in a record:11 it may be possible to infer the patient
(residence) postal code from the postal code of their phar-
macy or the prescriber if one assumes that there is some
regularity in the distances that patients travel to see their
general practitioner, specialist, or pharmacist. A simulation
concluded that a patient would have to live at most within
a 100-m radius from the pharmacy or prescriber to be able to
accurately predict the full postal code in urban areas.11 For
rural areas, the distance varies from 1 km in Nova Scotia, 5
km in Ontario, to 10 km in Alberta.11 We conducted a similar
simulation to determine the accuracy of inferring the FSA
and concluded that this can be accurately predicted if the
patient lives within 10 km of the pharmacist/prescriber for
rural areas, and within 1 km for urban areas in Nova Scotia
and Alberta, and 0.5 km in Ontario.

In our analysis, we therefore made the assumption that
the FSA was being collected or that it was reasonable to
accurately infer the FSA for some of the patients if it is not
collected.

Example 1
In this example, the prediction models were applied to assess
patient re-identification risk for pharmacy prescription records
in ten Canadian provinces, for the two quasi-identifiers of age
and gender. The MaxCombs value is 172; the number of all
possible values of age (86) � gender categories (2). For each of
the three regions of Canada the GAPS cut-off was computed
using the values in Table 5. The percentage of FSAs whose
population size is above the predicted cut-off for each province
along with the percentage of the population that resides in
these FSAs was then calculated.

The results are summarized in Table 7, and compared to the
three other cut-offs that were being used: the 20,000 cut-off
used in HIPAA (in practice the HIPAA Privacy Rule is

ree Canadian Regions and Validation Accuracy
ediction Error

0.9
7.4; p � 0.0001
0.4; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean �0.012
Median �0.016

0.9
7.3; p � 0.0001
0.4; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean �0.0002
Median �0.013

0.9
7.6; p � 0.0001
0.3; p � 0.0001
Relative prediction error (10-fold)

Trimmed mean �0.007
Median �0.015
e Th
ive Pr
sometimes used in Canada60), the Statistics Canada 70,000
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cut-off for the CCHS, and the Census Bureau 100,000 cut-off.
These data show that, except for New Brunswick, the vast
majority of the provincial populations live in FSAs that are
larger than the GAPS cut-off and therefore there is no
disclosure control benefit in aggregating the geography any
further.

Table 6 y Fields That can be Used to Re-identify Patie
Sources. For Hospital Pharmacies Other Data, Such as
However, Here We Focus on the Variables That are C

Variable

CPhA Standard

IMS57

Field in
OIPCA

Report?58

Defined in
CPhA
Std?56

CPhA
Mandatory?56

Patient gender Y O R Y

Patient year of
birth

Y O R Y

Patient postal
code

Y O — —

Pharmacy postal
code

Y M Y Y

Prescriber postal
code

Y O Y* Y

M � Mandatory field in the CPhA claims standard; O � optional field
data; CPhA � Canadian Pharmacists Association; SD � standard de
Alberta; R � The field is required by IMS health Canada from all pharm
The field is not defined or collected at all.
*whether this field is collected depends on the arrangement with a
**except MN, QC, NS.
***except PEI.
¶except BC, SK, MN, Nfld.
†Brogan collects the patient FSA as part of its record layout.

Table 7 y The Percentage of FSAs and the Provincial P
an Age � Gender Quasi-identifier Combination for A
the 2001 Census FSA Population Numbers Provided b

Province

Our GAPS Models 20,000

FSA Pop FSA

Alberta 55% 84% 38%
British Columbia 68% 87% 46%
Manitoba 59% 88% 39%
New Brunswick 20% 51% 4.5%
New found land 55% 83% 30%
Nova Scotia 47% 82% 16%
Ontario 69% 91% 49%
PEI 57% 90% 43%
Quebec 59% 84% 36%
Saskatchewan 60% 93% 49%
FSA � forward station area; GAPS � geographical area population size; PEI
For commercial data aggregators, there are three possible options:

1. Suppress the FSAs that are smaller than the cut-off. For
example, in Ontario data from 31% (100–69%) of FSAs
would need to be suppressed. These 31% of FSAs repre-
sent 9% of the Ontario population.

the Prescription Record According to Our Five
s for Admission and Discharge, are Collected.
on Between Retail and Hospital Pharmacies

losed
ing to

ey?54 Brogan59 Additional Explanations

** Y All sources indicate that patient gender is
collected.

** Y The survey suggests that some provinces
collected the full date of birth.54 But both
the OIPCA report58 as well as the IMS
Health Reports57 indicate that only the year
of birth is collected.

** Y† The survey indicated that only PEI allowed
the collection of postal codes.54 When we
contacted the pharmacy registrar in PEI it
was made clear that if geographic
information was disclosed by pharmacies,
only the FSA was being disclosed rather
than the full postal code. The IMS health
report indicated that neither the full postal
code nor FSA are collected from any
province.57 The Brogan document indicated
that the FSA was being collected.59

Y Brogan’s data are from hospital pharmacies,
therefore the pharmacist is known.

¶ Y Prescriber group is in the record layout for the
Brogan data.

fields will not necessarily be available for every pharmacy submitting
; OIPCA � Office of the Information and Privacy Commissioner of

ubmitting data, but if it is missing that would not invalidate the record.

lar pharmacy and on the province (not collected in BC, MN, QC).

ations That Would be Above the GAPS Cut-off for
Canadian Provinces. These Counts are Based on

tistics Canada
ff 70,000 Cut-off 100,000 Cut-off

Pop FSA Pop FSA Pop

71% 1.4% 5% 0.00 0
70% 1.1% 4.% 0.00 0
68% 0 0 0.00 0
19% 0 0 0.00 0
62% 0 0 0.00 0
43% 0 0 0.00 0
76% 1.4% 5% 0.20% 1%
79% 0 0 0.00 0
63% 1% 5% 0.25% 0
84% 2% 7% 0.00 2%
nts in
Date

omm

Disc
Accord

Surv

Y

Y

n*

—

Y

. These
viation
acies s

particu
opul
ll Ten
y Sta
Cut-o
� Prince Edward Island.
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2. Given that sex and gender are collected, determine what
level of geographic aggregation would be suitable to
avoid suppression of any data.

3. The analyst coarsens or collapses the response categories
of the quasi-identifiers given that the level of geography
is fixed at the FSA.

Suppression of data from small FSAs means that pharma-
cists would not be permitted to provide that data to the
commercial data aggregators. Nevertheless, there would
be far less FSA suppression using our models compared
to the other cut-offs in current use: our models take into
account the characteristics of the variables and calibrate
the cut-off. For some provinces, no data would be released
at all if some of the other GAPS cut-offs are applied.

For the second option described above, one can aggregate
FSAs to the postal region, the first character of the postal
code. We found that all postal regions in the ten provinces
are above the GAPS cut-off. Therefore, inclusion of the sex
and gender variables in the prescription record is possible
as long as the geographic detail is at the postal region
level, since this level of geography is always higher than
the cut-off. The advantage of this option is that no data
needs to be suppressed at all; however the disadvantage is
that the aggregated geographic unit is quite large.

For the third option described above, it is assumed that
the FSA geographic detail needs to be retained—the
question then is which one of sex and gender is to be
coarsened and the interval for grouping the coarsened age
categories. For example, instead of disclosing the age in
years, age can be disclosed as part of a 2-year interval, a
5-year interval, or a 10-year interval. The results for such
coarsened categories are shown in Table 8. As expected
the percentage of FSAs that can be disclosed increases as
the amount of coarsening increases. However, for smaller
provinces, such as New Brunswick, the proportion of the
population in large FSAs remains low even with 10-years
age intervals. Table 8 also shows the effect of coarsening
the categories for age in terms of the percentage of the
population. With 5-years age intervals, 98% of the Ontario
population would be living in regions that are larger than
the cut-off.

Table 8 y The Percentage of FSAs and the Provincial P
an Age � Gender Quasi-identifier Combination for A
Coarsened to Different Sized Intervals

Province

Original Variables
2-y
Int

FSA Pop FSA

Alberta 55% 84% 68%
British Columbia 68% 87% 78%
Manitoba 59% 88% 66%
New Brunswick 20% 51% 26%
Newfoundland 55% 83% 70%
Nova Scotia 47% 82% 54%
Ontario 69% 91% 78%
PEI 57% 90% 71%
Quebec 59% 84% 70%
Saskatchewan 60% 93% 69%
FSA � forward station area; GAPS � geographical area population size; PEI
Example 2
In this example we consider a specific data set from a
hospital pharmacy. Records for all prescriptions dispensed
from the Children’s Hospital of Eastern Ontario pharmacy
during the period beginning January 2007 to the end of June
2008 were obtained following institutional ethics approval.
In total there were 94,100 records. These represent 10,259
patient visits and 6,902 unique patients.

The MaxCombs value for these data are 54 since the patient
ages in years range from 0 to 26. Also, almost all of the
patients of the hospital come from Ontario and Quebec.
Therefore, we used the Central Canada model from Table 5.

The results were that 95% of the patients in the prescription
record database reside in FSAs that are larger than the
cut-off. However, for pediatric hospital patients it is impor-
tant to know the age in weeks for patients younger than 1
year. Here, the MaxCombs value is 156, and the result is that
89% of the patients live in FSAs that are larger than the
Central Canada cut-off.

Summary
These examples show that using the MaxCombs predic-
tion models given in Table 5 provide a straightforward
technique to determine the GAPS cut-offs for datasets so
the re-identification risk is managed while allowing for an
increased amount of data to be available to the health
researcher.

Relationship to Other Work
There have been previous descriptive studies of uniqueness
in the United States population on basic demographic vari-
ables, such as age and gender.61,62 However, these studies
did not explicitly consider the impact of nested geographic
areas and their population size on uniqueness.

We used uniqueness as the measure for re-identification
risk. Another common criterion for evaluating re-identifica-
tion risk is k-anonymity.63,64 This criterion considers that
non-unique records are also risky. However, even under
k-anonymity, unique records are still those with the highest
probability of re-identification. Therefore, managing the risk
of re-identification from uniques remains an important
objective in disclosure control.

ations That Would be Above the GAPS Cut-off for
Canadian Provinces When the Age Variable is

5-yrs Age
Intervals

10-yrs Age
Intervals

Pop FSA Pop FSA Pop

92% 79% 96% 84% 98%
93% 90% 99% 93% 99%
92% 72% 95% 78% 98%
59% 37% 70% 45% 75%
91% 79% 95% 88% 98%
86% 66% 93% 72% 95%
96% 84% 98% 87% 99%
97% 71% 97% 71% 97%
91% 82% 96% 88% 99%
97% 69% 97% 71% 98%
opul
ll Ten

rs Age
ervals
� Prince Edward Island.
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Earlier work at the United States Census Bureau evaluated
nested geographic areas, and provided the basic methodol-
ogy for our study.29,31 This work did not document a general
model that can be applied by individuals outside the bureau
and that takes into account the characteristics of the quasi-
identifiers, which is what we did in this study.

Limitations
The prediction models we present here should be consid-
ered as one element in a toolbox of heuristics that can be
used for disclosure control. Some other heuristics have been
described in previous work.65,66

Although we contend that the ten quasi-identifiers we
considered represent basic demographics that are quite
common in health research, they will not cover all possible
quasi-identifiers that may be used in practice. Thus, our
results are limited to the specific variables that we have
considered in our analysis.

Conclusions
Data custodians often use general population size cut-offs to
determine the level of geographic information to disclose in
a data set. For example, the HIPAA Privacy Rule’s Safe
Harbor list allows the release of the first three digits of the
ZIP code only if that area has 20,000 or more individuals
living in it. National statistical agencies in the United States,
UK, and Canada also use such cut-offs as part of their
disclosure control practices. The primary rationale for such
cut-offs is that there is no disclosure control benefit for
aggregating geographic areas beyond that size.

In this paper we performed an empirical evaluation of such
cut-offs using Canadian census data. Our results indicate
that the appropriate cut-off depends on characteristics of the
variables included in the data set; therefore there is not a
single cut-off. We developed and validated models to pre-
dict such population size cut-offs for Canada. The model
which predicted population cut-offs using the maximum
number of possible values in the data set had R2 values
approaching 0.9, and relative error of prediction less than
0.02 across all regions of Canada. Our prediction models
were then applied in a risk assessment of the prescription
records that are provided by Canadian pharmacies to com-
mercial data aggregators. This assessment indicated that for
most of the Canadian population, that there is no disclosure
control benefit to aggregating geography beyond the FSA
when releasing patient age and gender.
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